These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 36985045)

  • 1. Microfluidic Methods for Generation of Submicron Droplets: A Review.
    Huang B; Xie H; Li Z
    Micromachines (Basel); 2023 Mar; 14(3):. PubMed ID: 36985045
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidic separation of satellite droplets as the basis of a monodispersed micron and submicron emulsification system.
    Tan YC; Lee AP
    Lab Chip; 2005 Oct; 5(10):1178-83. PubMed ID: 16175277
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlling thread formation during tipstreaming through an active feedback control loop.
    Moyle TM; Walker LM; Anna SL
    Lab Chip; 2013 Dec; 13(23):4534-41. PubMed ID: 24100760
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monodisperse Micro-Droplet Generation in Microfluidic Channel with Asymmetric Cross-Sectional Shape.
    Cho Y; Kim J; Park J; Kim HS; Cho Y
    Micromachines (Basel); 2023 Jan; 14(1):. PubMed ID: 36677284
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent progress in the synthesis of all-aqueous two-phase droplets using microfluidic approaches.
    Daradmare S; Lee CS
    Colloids Surf B Biointerfaces; 2022 Nov; 219():112795. PubMed ID: 36049253
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Active Femtoliter Droplet Generation in Microfluidics by Confined Interface Vibration.
    Li D; Cao Y; Huang B; Han M; Wu X; Sun Q; Zheng C; Zhao L; Ma C; Jin H; Wang X; Liu Y; Zhang Y
    Langmuir; 2021 Jan; 37(3):1297-1305. PubMed ID: 33428403
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Versatile Tool for Droplet Generation in Standard Reaction Tubes by Centrifugal Step Emulsification.
    Schulz M; Probst S; Calabrese S; R Homann A; Borst N; Weiss M; von Stetten F; Zengerle R; Paust N
    Molecules; 2020 Apr; 25(8):. PubMed ID: 32326221
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting.
    Tan YC; Fisher JS; Lee AI; Cristini V; Lee AP
    Lab Chip; 2004 Aug; 4(4):292-8. PubMed ID: 15269794
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-Aspect-Ratio Microfluidic Channel with Parallelogram Cross-Section for Monodisperse Droplet Generation.
    Ji H; Lee J; Park J; Kim J; Kim HS; Cho Y
    Biosensors (Basel); 2022 Feb; 12(2):. PubMed ID: 35200378
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Rapid generation of double-layer emulsion droplets based on microfluidic chip].
    Bai L; Yuan H; Tu R; Wang Q; Hua E
    Sheng Wu Gong Cheng Xue Bao; 2020 Jul; 36(7):1405-1413. PubMed ID: 32748598
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of splashing phenomena during the impact of molten sub-micron gold droplets on solid surfaces.
    Shen D; Zou G; Liu L; Duley WW; Norman Zhou Y
    Soft Matter; 2016 Jan; 12(1):295-301. PubMed ID: 26456326
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Active droplet generation in microfluidics.
    Chong ZZ; Tan SH; Gañán-Calvo AM; Tor SB; Loh NH; Nguyen NT
    Lab Chip; 2016 Jan; 16(1):35-58. PubMed ID: 26555381
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic generation of aqueous two-phase-system (ATPS) droplets by oil-droplet choppers.
    Zhou C; Zhu P; Tian Y; Tang X; Shi R; Wang L
    Lab Chip; 2017 Sep; 17(19):3310-3317. PubMed ID: 28861566
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidic formation of highly monodispersed multiple cored droplets using needle-based system in parallel mode.
    Lian Z; Chan Y; Luo Y; Yang X; Koh KS; Wang J; Chen GZ; Ren Y; He J
    Electrophoresis; 2020 Jun; 41(10-11):891-901. PubMed ID: 31998972
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Convenient microfluidic cartridge for single-molecule droplet PCR using common laboratory equipment.
    Takahara H; Matsushita H; Inui E; Ochiai M; Hashimoto M
    Anal Methods; 2021 Mar; 13(8):974-985. PubMed ID: 33533381
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surfactant-Stabilized Spontaneous 3-(Trimethoxysilyl) Propyl Methacrylate Nanoemulsions.
    Neibloom D; Bevan MA; Frechette J
    Langmuir; 2020 Jan; 36(1):284-292. PubMed ID: 31838848
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Particle Templated Emulsification enables Microfluidic-Free Droplet Assays.
    Weisgerber DW; Hatori MN; Abate AR
    J Vis Exp; 2021 Mar; (169):. PubMed ID: 33779600
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High aspect ratio induced spontaneous generation of monodisperse picolitre droplets for digital PCR.
    Xu X; Yuan H; Song R; Yu M; Chung HY; Hou Y; Shang Y; Zhou H; Yao S
    Biomicrofluidics; 2018 Jan; 12(1):014103. PubMed ID: 29333205
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A passive microfluidic system based on step emulsification allows the generation of libraries of nanoliter-sized droplets from microliter droplets of varying and known concentrations of a sample.
    Postek W; Kaminski TS; Garstecki P
    Lab Chip; 2017 Mar; 17(7):1323-1331. PubMed ID: 28271118
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabricating High-viscosity Droplets using Microfluidic Capillary Device with Phase-inversion Co-flow Structure.
    Li J; Man J; Li Z; Chen H
    J Vis Exp; 2018 Apr; (134):. PubMed ID: 29733319
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.