These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 36985063)

  • 1. Rapid Prototyping of Multi-Functional and Biocompatible Parafilm
    Wei Y; Wang T; Wang Y; Zeng S; Ho YP; Ho HP
    Micromachines (Basel); 2023 Mar; 14(3):. PubMed ID: 36985063
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of four functional biocompatible pressure-sensitive adhesives for rapid prototyping of cell-based lab-on-a-chip and organ-on-a-chip systems.
    Kratz SRA; Eilenberger C; Schuller P; Bachmann B; Spitz S; Ertl P; Rothbauer M
    Sci Rep; 2019 Jun; 9(1):9287. PubMed ID: 31243326
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wax-bonding 3D microfluidic chips.
    Gong X; Yi X; Xiao K; Li S; Kodzius R; Qin J; Wen W
    Lab Chip; 2010 Oct; 10(19):2622-7. PubMed ID: 20689865
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid-release reversible bonding of PMMA-based microfluidic devices with PBMA coating.
    Li Y; Xu F; Liu J; Zhang Q; Fan Y
    Biomed Microdevices; 2023 Dec; 26(1):6. PubMed ID: 38141082
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simple and low-cost production of hybrid 3D-printed microfluidic devices.
    Duong LH; Chen PC
    Biomicrofluidics; 2019 Mar; 13(2):024108. PubMed ID: 31065307
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adhesive bonding strategies to fabricate high-strength and transparent 3D printed microfluidic device.
    Kecili S; Tekin HC
    Biomicrofluidics; 2020 Mar; 14(2):024113. PubMed ID: 32341724
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid prototyping of PMMA-based microfluidic spheroid-on-a-chip models using micromilling and vapour-assisted thermal bonding.
    Ahmed MAM; Jurczak KM; Lynn NS; Mulder JSH; Verpoorte EMJ; Nagelkerke A
    Sci Rep; 2024 Feb; 14(1):2831. PubMed ID: 38310102
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultra-low-cost fabrication of polymer-based microfluidic devices with diode laser ablation.
    Gao K; Liu J; Fan Y; Zhang Y
    Biomed Microdevices; 2019 Aug; 21(4):83. PubMed ID: 31418064
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Simple and Low-Cost Method for Fabrication of Polydimethylsiloxane Microfludic Chips.
    Sun L; Zhang L; Yang X; Zhang B; Yin Z
    J Nanosci Nanotechnol; 2021 Nov; 21(11):5635-5641. PubMed ID: 33980373
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Designing Microfluidic Devices for Studying Cellular Responses Under Single or Coexisting Chemical/Electrical/Shear Stress Stimuli.
    Chou TY; Sun YS; Hou HS; Wu SY; Zhu Y; Cheng JY; Lo KY
    J Vis Exp; 2016 Aug; (114):. PubMed ID: 27584698
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Low-Cost 3-in-1 3D Printer as a Tool for the Fabrication of Flow-Through Channels of Microfluidic Systems.
    Thaweskulchai T; Schulte A
    Micromachines (Basel); 2021 Aug; 12(8):. PubMed ID: 34442569
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid Fabrication of Poly(methyl methacrylate) Devices for Lab-on-a-Chip Applications Using Acetic Acid and UV Treatment.
    Trinh KTL; Thai DA; Chae WR; Lee NY
    ACS Omega; 2020 Jul; 5(28):17396-17404. PubMed ID: 32715224
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extrusion-based printing of sacrificial Carbopol ink for fabrication of microfluidic devices.
    Ozbolat V; Dey M; Ayan B; Ozbolat IT
    Biofabrication; 2019 Apr; 11(3):034101. PubMed ID: 30884470
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CO₂ Laser-Based Rapid Prototyping of Micropumps.
    Strike Z; Ghofrani K; Backhouse C
    Micromachines (Basel); 2018 May; 9(5):. PubMed ID: 30424149
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Maskless, rapid manufacturing of glass microfluidic devices using a picosecond pulsed laser.
    Wlodarczyk KL; Hand DP; Maroto-Valer MM
    Sci Rep; 2019 Dec; 9(1):20215. PubMed ID: 31882878
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal assisted ultrasonic bonding method for poly(methyl methacrylate) (PMMA) microfluidic devices.
    Zhang Z; Wang X; Luo Y; He S; Wang L
    Talanta; 2010 Jun; 81(4-5):1331-8. PubMed ID: 20441903
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemically resistant microfluidic valves from Viton® membranes bonded to COC and PMMA.
    Ogilvie IR; Sieben VJ; Cortese B; Mowlem MC; Morgan H
    Lab Chip; 2011 Jul; 11(14):2455-9. PubMed ID: 21617822
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfabrication of Nonplanar Polymeric Microfluidics.
    Chen PC; Lee CY; Duong LH
    Micromachines (Basel); 2018 Sep; 9(10):. PubMed ID: 30424424
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Facile Patterning of Thermoplastic Elastomers and Robust Bonding to Glass and Thermoplastics for Microfluidic Cell Culture and Organ-on-Chip.
    Schneider S; Brás EJS; Schneider O; Schlünder K; Loskill P
    Micromachines (Basel); 2021 May; 12(5):. PubMed ID: 34070209
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a direct PMMA-PCB bonding method for low cost and rapid prototyping of microfluidic-based gas analysers.
    Emadzadeh K; Ghafarinia V
    RSC Adv; 2024 Jul; 14(31):22598-22605. PubMed ID: 39021459
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.