These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 36985065)

  • 21. Simultaneous detection of multiple HPV DNA via bottom-well microfluidic chip within an infra-red PCR platform.
    Liu W; Warden A; Sun J; Shen G; Ding X
    Biomicrofluidics; 2018 Mar; 12(2):024109. PubMed ID: 29576839
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Portable and Battery-Powered PCR Device for DNA Amplification and Fluorescence Detection.
    Jie J; Hu S; Liu W; Wei Q; Huang Y; Yuan X; Ren L; Tan M; Yu Y
    Sensors (Basel); 2020 May; 20(9):. PubMed ID: 32380637
    [TBL] [Abstract][Full Text] [Related]  

  • 23. PCR amplification using electrolytic resistance for heating and temperature monitoring.
    Heap DM; Herrmann MG; Wittwer CT
    Biotechniques; 2000 Nov; 29(5):1006-12. PubMed ID: 11084862
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A disposable laser print-cut-laminate polyester microchip for multiplexed PCR via infra-red-mediated thermal control.
    Ouyang Y; Duarte GR; Poe BL; Riehl PS; dos Santos FM; Martin-Didonet CC; Carrilho E; Landers JP
    Anal Chim Acta; 2015 Dec; 901():59-67. PubMed ID: 26614058
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Temperature distribution effects on micro-CFPCR performance.
    Chen PC; Nikitopoulos DE; Soper SA; Murphy MC
    Biomed Microdevices; 2008 Apr; 10(2):141-52. PubMed ID: 17896180
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Thermocycler Using a Chip Resistor Heater and a Glass Microchip for a Portable and Rapid Microchip-Based PCR Device.
    Yeom D; Kim J; Kim S; Ahn S; Choi J; Kim Y; Koo C
    Micromachines (Basel); 2022 Feb; 13(2):. PubMed ID: 35208463
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fabrication of an Oscillating Thermocycler to Analyze the Canine Distemper Virus by Utilizing Reverse Transcription Polymerase Chain Reaction.
    Chen JJ; Lin ZH
    Micromachines (Basel); 2022 Apr; 13(4):. PubMed ID: 35457905
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Increasing the denaturation temperature during the first cycles of amplification reduces allele dropout from single cells for preimplantation genetic diagnosis.
    Ray PF; Handyside AH
    Mol Hum Reprod; 1996 Mar; 2(3):213-8. PubMed ID: 9238682
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ultrafast Nucleic Acid Detection Equipment with Silicon-Based Microfluidic Chip.
    Zhang J; Yang Z; Liu L; Zhang T; Hu L; Hu C; Chen H; Ding R; Liu B; Chen C
    Biosensors (Basel); 2023 Feb; 13(2):. PubMed ID: 36832000
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Methods of isothermal nucleic acid amplification-based microfluidic chips for pathogen microorganism detection].
    He XP; Zou BJ; Qi XM; Chen S; Lu Y; Huang Q; Zhou GH
    Yi Chuan; 2019 Jul; 41(7):611-624. PubMed ID: 31307970
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Two-Stage Isothermal Enzymatic Amplification for Concurrent Multiplex Molecular Detection.
    Song J; Liu C; Mauk MG; Rankin SC; Lok JB; Greenberg RM; Bau HH
    Clin Chem; 2017 Mar; 63(3):714-722. PubMed ID: 28073898
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Design and Implementation of Polymerase Chain Reaction Device for Aptamers Selection of Tumor Cells.
    Wang C; Meng F; Huang Y; He N; Chen Z
    J Nanosci Nanotechnol; 2020 Mar; 20(3):1332-1340. PubMed ID: 31492292
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Isothermal amplification technology based on microfluidic chip].
    Tu Y; Yang D; Zhang Z; Dong X; Liu L; Miao G; Zhang L; Qiu X
    Sheng Wu Gong Cheng Xue Bao; 2022 Mar; 38(3):943-960. PubMed ID: 35355466
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Portable Heating System Based on a Liquid Metal Bath for Rapid PCR.
    Wang K; Wang Q; Peng C; Guo Y; Li Y; Zhou J; Wu W
    ACS Omega; 2022 Aug; 7(30):26165-26173. PubMed ID: 35936432
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Plasmonic and label-free real-time quantitative PCR for point-of-care diagnostics.
    Mohammadyousef P; Paliouras M; Trifiro MA; Kirk AG
    Analyst; 2021 Sep; 146(18):5619-5630. PubMed ID: 34378560
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Performance evaluation of optimal real-time polymerase chain reaction achieved with reduced voltage.
    Hwang JS; Kim JD; Kim YS; Song HJ; Park CY
    Biomed Eng Online; 2018 Nov; 17(Suppl 2):156. PubMed ID: 30396352
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Infrared-mediated thermocycling for ultrafast polymerase chain reaction amplification of DNA.
    Oda RP; Strausbauch MA; Huhmer AF; Borson N; Jurrens SR; Craighead J; Wettstein PJ; Eckloff B; Kline B; Landers JP
    Anal Chem; 1998 Oct; 70(20):4361-8. PubMed ID: 9796420
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Analysis and Optimization of the Temperature Retard between Sample and Air Based on Nucleic Acid Amplification System Heated by Air].
    Wu J; Du Y; Chen F; Qiao L; Wei J; Wu T
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2016 Dec; 33(6):1067-74. PubMed ID: 29714969
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Miniaturized flow-through PCR with different template types in a silicon chip thermocycler.
    Schneegass I; Brautigam R; Kohler JM
    Lab Chip; 2001 Sep; 1(1):42-9. PubMed ID: 15100888
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Continuous-flow thermal gradient PCR.
    Crews N; Wittwer C; Gale B
    Biomed Microdevices; 2008 Apr; 10(2):187-95. PubMed ID: 17874300
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.