These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 36985070)

  • 1. A Generalized Model for Curved Nanobeams Incorporating Surface Energy.
    Khater ME
    Micromachines (Basel); 2023 Mar; 14(3):. PubMed ID: 36985070
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of Surface Stress-Driven Model for Higher Vibration Modes of Functionally Graded Nanobeams.
    Lovisi G; Feo L; Lambiase A; Penna R
    Nanomaterials (Basel); 2024 Feb; 14(4):. PubMed ID: 38392723
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation into the Dynamic Stability of Nanobeams by Using the Levinson Beam Model.
    Huang Y; Huang R; Huang Y
    Materials (Basel); 2023 Apr; 16(9):. PubMed ID: 37176285
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The vibrational and buckling behaviors of piezoelectric nanobeams with surface effects.
    Yan Z; Jiang LY
    Nanotechnology; 2011 Jun; 22(24):245703. PubMed ID: 21508448
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Nonlinear Nonlocal Thermoelasticity Euler-Bernoulli Beam Theory and Its Application to Single-Walled Carbon Nanotubes.
    Huang K; Xu W
    Nanomaterials (Basel); 2023 Feb; 13(4):. PubMed ID: 36839089
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Free Vibrations of Bernoulli-Euler Nanobeams with Point Mass Interacting with Heavy Fluid Using Nonlocal Elasticity.
    Barretta R; Čanađija M; Marotti de Sciarra F; Skoblar A
    Nanomaterials (Basel); 2022 Aug; 12(15):. PubMed ID: 35957106
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic Stability of Nanobeams Based on the Reddy's Beam Theory.
    Huang Y; Huang R; Zhang J
    Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36837255
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coupling Analysis of Flexoelectric Effect on Functionally Graded Piezoelectric Cantilever Nanobeams.
    Chen Y; Zhang M; Su Y; Zhou Z
    Micromachines (Basel); 2021 May; 12(6):. PubMed ID: 34064085
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of surface stress on stress intensity factors of a nanoscale crack via double cantilever beam model.
    Wang H; Li X; Tang G; Shen Z
    J Nanosci Nanotechnol; 2013 Jan; 13(1):477-82. PubMed ID: 23646757
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vibration analysis of nanobeams subjected to gradient-type heating due to a static magnetic field under the theory of nonlocal elasticity.
    Ahmad H; Abouelregal AE; Benhamed M; Alotaibi MF; Jendoubi A
    Sci Rep; 2022 Feb; 12(1):1894. PubMed ID: 35115646
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stress-Based FEM in the Problem of Bending of Euler-Bernoulli and Timoshenko Beams Resting on Elastic Foundation.
    Więckowski Z; Świątkiewicz P
    Materials (Basel); 2021 Jan; 14(2):. PubMed ID: 33477876
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonlinear Free and Forced Vibrations of a Hyperelastic Micro/Nanobeam Considering Strain Stiffening Effect.
    Alibakhshi A; Dastjerdi S; Malikan M; Eremeyev VA
    Nanomaterials (Basel); 2021 Nov; 11(11):. PubMed ID: 34835830
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bending, longitudinal and torsional wave transmission on Euler-Bernoulli and Timoshenko beams with high propagation losses.
    Wang X; Hopkins C
    J Acoust Soc Am; 2016 Oct; 140(4):2312. PubMed ID: 27794356
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Finite Beam Element for Curved Steel-Concrete Composite Box Beams Considering Time-Dependent Effect.
    Wang GM; Zhu L; Ji XL; Ji WY
    Materials (Basel); 2020 Jul; 13(15):. PubMed ID: 32707892
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamics of Space-Fractional Euler-Bernoulli and Timoshenko Beams.
    Stempin P; Sumelka W
    Materials (Basel); 2021 Apr; 14(8):. PubMed ID: 33916946
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of the Higher-Order Hamilton Approach to the Nonlinear Free Vibrations Analysis of Porous FG Nano-Beams in a Hygrothermal Environment Based on a Local/Nonlocal Stress Gradient Model of Elasticity.
    Penna R; Feo L; Lovisi G; Fabbrocino F
    Nanomaterials (Basel); 2022 Jun; 12(12):. PubMed ID: 35745434
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface effect on the elastic behavior of static bending nanowires.
    He J; Lilley CM
    Nano Lett; 2008 Jul; 8(7):1798-802. PubMed ID: 18510370
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigations on the buckling and dynamics of diving-inspired systems when entering water.
    Zimmerman S; Abdelkefi A
    Bioinspir Biomim; 2020 Mar; 15(3):036015. PubMed ID: 32066135
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A dual mesh finite domain method for the analysis of functionally graded beams.
    Reddy JN; Nampally P
    Compos Struct; 2020 Nov; 251():112648. PubMed ID: 32834325
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical property measurements of nanoscale structures using an atomic force microscope.
    Sundararajan S; Bhushan B; Namazu T; Isono Y
    Ultramicroscopy; 2002 May; 91(1-4):111-8. PubMed ID: 12211458
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.