These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 36985213)

  • 1. Experimentally Induced Dieback Conditions Limit
    Bickford WA; Snow DS; Smith MKH; Kingsley KL; White JF; Kowalski KP
    Microorganisms; 2023 Mar; 11(3):. PubMed ID: 36985213
    [No Abstract]   [Full Text] [Related]  

  • 2. Plant effects on and response to soil microbes in native and non-native Phragmites australis.
    Bickford WA; Goldberg DE; Zak DR; Snow DS; Kowalski KP
    Ecol Appl; 2022 Jun; 32(4):e2565. PubMed ID: 35138659
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nitrogen immobilization may reduce invasibility of nutrient enriched plant community invaded by Phragmites australis.
    Uddin MN; Robinson RW; Asaeda T
    Sci Rep; 2020 Jan; 10(1):1601. PubMed ID: 32005878
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeted grazing reduces a widespread wetland plant invader with minimal nutrient impacts, yet native community recovery is limited.
    Rohal CB; Duncan B; Follstad Shah J; Veblen KE; Kettenring KM
    J Environ Manage; 2024 Jun; 362():121168. PubMed ID: 38823302
    [TBL] [Abstract][Full Text] [Related]  

  • 5. AFLP Approach Reveals Variability in
    Coppi A; Lastrucci L; Cappelletti D; Cerri M; Ferranti F; Ferri V; Foggi B; Gigante D; Venanzoni R; Viciani D; Selvaggi R; Reale L
    Front Plant Sci; 2018; 9():386. PubMed ID: 29632544
    [No Abstract]   [Full Text] [Related]  

  • 6. An invasive wetland grass primes deep soil carbon pools.
    Bernal B; Megonigal JP; Mozdzer TJ
    Glob Chang Biol; 2017 May; 23(5):2104-2116. PubMed ID: 27779794
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Soil conditioning effects of
    Crocker EV; Nelson EB; Blossey B
    Ecol Evol; 2017 Aug; 7(15):5571-5579. PubMed ID: 28808539
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Soil pathogen communities associated with native and non-native Phragmites australis populations in freshwater wetlands.
    Nelson EB; Karp MA
    Ecol Evol; 2013 Dec; 3(16):5254-67. PubMed ID: 24455153
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Virulence of oomycete pathogens from Phragmites australis-invaded and noninvaded soils to seedlings of wetland plant species.
    Crocker EV; Karp MA; Nelson EB
    Ecol Evol; 2015 Jun; 5(11):2127-39. PubMed ID: 26078850
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differences in rhizosphere microbial communities between native and non-native
    Bickford WA; Zak DR; Kowalski KP; Goldberg DE
    Ecol Evol; 2020 Oct; 10(20):11739-11751. PubMed ID: 33144997
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intraspecific variation in indirect plant-soil feedbacks influences a wetland plant invasion.
    Allen WJ; Meyerson LA; Flick AJ; Cronin JT
    Ecology; 2018 Jun; 99(6):1430-1440. PubMed ID: 29771449
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Applying predictive models to decipher rhizobacterial modifications in common reed die-back affected populations.
    Bacci G; Cerri M; Lastrucci L; Ferranti F; Ferri V; Foggi B; Gigante D; Venanzoni R; Viciani D; Mengoni A; Reale L; Coppi A
    Sci Total Environ; 2018 Nov; 642():708-722. PubMed ID: 29913366
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Can nutrient enrichment influence the invasion of Phragmites australis?
    Uddin MN; Robinson RW
    Sci Total Environ; 2018 Feb; 613-614():1449-1459. PubMed ID: 28648370
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contrasting nutrient stocks and litter decomposition in stands of native and invasive species in a sub-tropical estuarine marsh.
    Tong C; Zhang L; Wang W; Gauci V; Marrs R; Liu B; Jia R; Zeng C
    Environ Res; 2011 Oct; 111(7):909-16. PubMed ID: 21704985
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Complete host specificity test plant list and associated data to assess host specificity of
    Blossey B; Häfliger P; Tewksbury L; Dávalos A; Casagrande R
    Data Brief; 2018 Aug; 19():1755-1764. PubMed ID: 30229049
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contrasting Patterns in Diversity and Community Assembly of Phragmites australis Root-Associated Bacterial Communities from Different Seasons.
    He R; Zeng J; Zhao D; Huang R; Yu Z; Wu QL
    Appl Environ Microbiol; 2020 Jul; 86(14):. PubMed ID: 32385080
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surveying managers to inform a regionally relevant invasive Phragmites australis control research program.
    Rohal CB; Kettenring KM; Sims K; Hazelton ELG; Ma Z
    J Environ Manage; 2018 Jan; 206():807-816. PubMed ID: 29182931
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional Role of Bacteria from Invasive Phragmites australis in Promotion of Host Growth.
    Soares MA; Li HY; Kowalski KP; Bergen M; Torres MS; White JF
    Microb Ecol; 2016 Aug; 72(2):407-17. PubMed ID: 27260154
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Long-distance dispersal and high genetic diversity are implicated in the invasive spread of the common reed, Phragmites australis (Poaceae), in northeastern North America.
    Kirk H; Paul J; Straka J; Freeland JR
    Am J Bot; 2011 Jul; 98(7):1180-90. PubMed ID: 21712417
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic diversity of native and introduced Phragmites (common reed) in Wisconsin.
    Tippery NP; Pesch JD; Murphy BJ; Bautzmann RL
    Genetica; 2020 Aug; 148(3-4):165-172. PubMed ID: 32749631
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.