BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 36985424)

  • 41. Three-Fragment Fluorescence Complementation Coupled with Photoactivated Localization Microscopy for Nanoscale Imaging of Ternary Complexes.
    Chen M; Liu S; Li W; Zhang Z; Zhang X; Zhang XE; Cui Z
    ACS Nano; 2016 Sep; 10(9):8482-90. PubMed ID: 27584616
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Analysis of Spatial Assembly of GPCRs Using Photoactivatable Dyes and Localization Microscopy.
    Jonas KC; Hanyaloglu AC
    Methods Mol Biol; 2019; 1947():337-348. PubMed ID: 30969426
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Oxime as a general photocage for the design of visible light photo-activatable fluorophores.
    Wang L; Wang S; Tang J; Espinoza VB; Loredo A; Tian Z; Weisman RB; Xiao H
    Chem Sci; 2021 Dec; 12(47):15572-15580. PubMed ID: 35003586
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Photochemical Mechanisms of Fluorophores Employed in Single-Molecule Localization Microscopy.
    Kikuchi K; Adair LD; Lin J; New EJ; Kaur A
    Angew Chem Int Ed Engl; 2023 Jan; 62(1):e202204745. PubMed ID: 36177530
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Photoactivated Localization Microscopy (PALM) of adhesion complexes.
    Shroff H; White H; Betzig E
    Curr Protoc Cell Biol; 2013 Mar; Chapter 4():4.21.1-4.21.28. PubMed ID: 23456603
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Highly activatable and environment-insensitive optical highlighters for selective spatiotemporal imaging of target proteins.
    Kobayashi T; Komatsu T; Kamiya M; Campos C; González-Gaitán M; Terai T; Hanaoka K; Nagano T; Urano Y
    J Am Chem Soc; 2012 Jul; 134(27):11153-60. PubMed ID: 22694089
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Bright monomeric photoactivatable red fluorescent protein for two-color super-resolution sptPALM of live cells.
    Subach FV; Patterson GH; Renz M; Lippincott-Schwartz J; Verkhusha VV
    J Am Chem Soc; 2010 May; 132(18):6481-91. PubMed ID: 20394363
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A general design of caging-group-free photoactivatable fluorophores for live-cell nanoscopy.
    Lincoln R; Bossi ML; Remmel M; D'Este E; Butkevich AN; Hell SW
    Nat Chem; 2022 Sep; 14(9):1013-1020. PubMed ID: 35864152
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The application of water soluble, mega-Stokes-shifted BODIPY fluorophores to cell and tissue imaging.
    Moriarty RD; Martin A; Adamson K; O'Reilly E; Mollard P; Forster RJ; Keyes TE
    J Microsc; 2014 Mar; 253(3):204-18. PubMed ID: 24467513
    [TBL] [Abstract][Full Text] [Related]  

  • 50. BODIPYs as Chemically Stable Fluorescent Tags for Synthetic Glycosylation Strategies towards Fluorescently Labeled Saccharides.
    Uriel C; Permingeat C; Ventura J; Avellanal-Zaballa E; Bañuelos J; García-Moreno I; Gómez AM; Lopez JC
    Chemistry; 2020 Apr; 26(24):5388-5399. PubMed ID: 31999023
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Recent advances in super-resolution fluorescence imaging and its applications in biology.
    Han R; Li Z; Fan Y; Jiang Y
    J Genet Genomics; 2013 Dec; 40(12):583-95. PubMed ID: 24377865
    [TBL] [Abstract][Full Text] [Related]  

  • 52. BODIPY Fluorophores for Membrane Potential Imaging.
    Franke JM; Raliski BK; Boggess SC; Natesan DV; Koretsky ET; Zhang P; Kulkarni RU; Deal PE; Miller EW
    J Am Chem Soc; 2019 Aug; 141(32):12824-12831. PubMed ID: 31339313
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A convenient method for multicolour labelling of proteins with BODIPY fluorophores via tyrosine residues.
    Cheng MHY; Savoie H; Bryden F; Boyle RW
    Photochem Photobiol Sci; 2017 Aug; 16(8):1260-1267. PubMed ID: 28636039
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Quantitative Single-Molecule Localization Microscopy (qSMLM) of Membrane Proteins Based on Kinetic Analysis of Fluorophore Blinking Cycles.
    Fricke F; Beaudouin J; Malkusch S; Eils R; Heilemann M
    Methods Mol Biol; 2017; 1663():115-126. PubMed ID: 28924663
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Thiocyanation of BODIPY dyes and their conversion to thioalkylated derivatives.
    de Rezende LC; de Melo SM; Boodts S; Verbelen B; Dehaen W; da Silva Emery F
    Org Biomol Chem; 2015 Jun; 13(21):6031-8. PubMed ID: 25946645
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Photoactivatable fluorescent proteins for super-resolution microscopy.
    Ishitsuka Y; Nienhaus K; Nienhaus GU
    Methods Mol Biol; 2014; 1148():239-60. PubMed ID: 24718806
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Single-molecule localization microscopy-near-molecular spatial resolution in light microscopy with photoswitchable fluorophores.
    Fürstenberg A; Heilemann M
    Phys Chem Chem Phys; 2013 Sep; 15(36):14919-30. PubMed ID: 23925641
    [TBL] [Abstract][Full Text] [Related]  

  • 58. BODIPY-based dye for no-wash live-cell staining and imaging.
    Pakhomov AA; Deyev IE; Ratnikova NM; Chumakov SP; Mironiuk VB; Kononevich YN; Muzafarov AM; Martynov VI
    Biotechniques; 2017 Aug; 63(2):77-80. PubMed ID: 28803543
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Counting single photoactivatable fluorescent molecules by photoactivated localization microscopy (PALM).
    Lee SH; Shin JY; Lee A; Bustamante C
    Proc Natl Acad Sci U S A; 2012 Oct; 109(43):17436-41. PubMed ID: 23045631
    [TBL] [Abstract][Full Text] [Related]  

  • 60. BODIPYs revealing lipid droplets as valuable targets for photodynamic theragnosis.
    Tabero A; García-Garrido F; Prieto-Castañeda A; Palao E; Agarrabeitia AR; García-Moreno I; Villanueva A; de la Moya S; Ortiz MJ
    Chem Commun (Camb); 2020 Jan; 56(6):940-943. PubMed ID: 31850455
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.