BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 36985491)

  • 1. Highly Reactive Thermite Energetic Materials: Preparation, Characterization, and Applications: A Review.
    Guo X; Liang T; Islam ML; Chen X; Wang Z
    Molecules; 2023 Mar; 28(6):. PubMed ID: 36985491
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Core-Shell Structured Nanoenergetic Materials: Preparation and Fundamental Properties.
    Ma X; Li Y; Hussain I; Shen R; Yang G; Zhang K
    Adv Mater; 2020 Jul; 32(30):e2001291. PubMed ID: 32557860
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly Reactive Metastable Intermixed Composites (MICs): Preparation and Characterization.
    He W; Liu PJ; He GQ; Gozin M; Yan QL
    Adv Mater; 2018 Oct; 30(41):e1706293. PubMed ID: 29862580
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparative study on the mechanical and reactive behavior of three fluorine-containing thermites.
    Wu J; Liu Q; Feng B; Wu S; Zhang S; Gao Z; Yin Q; Li Y; Xiao L; Huang J
    RSC Adv; 2020 Feb; 10(10):5533-5539. PubMed ID: 35497435
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Al-Based Nano-Sized Composite Energetic Materials (Nano-CEMs): Preparation, Characterization, and Performance.
    Pang W; Fan X; Wang K; Chao Y; Xu H; Qin Z; Zhao F
    Nanomaterials (Basel); 2020 May; 10(6):. PubMed ID: 32485843
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of nanocomposite synthesis on the combustion performance of a ternary thermite.
    Prentice D; Pantoya ML; Clapsaddle BJ
    J Phys Chem B; 2005 Nov; 109(43):20180-5. PubMed ID: 16853608
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrophoretic deposition of thermites onto micro-engineered electrodes prepared by direct-ink writing.
    Sullivan KT; Zhu C; Tanaka DJ; Kuntz JD; Duoss EB; Gash AE
    J Phys Chem B; 2013 Feb; 117(6):1686-93. PubMed ID: 22897397
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of Nano-Sized Energetic Materials (nEMs) on the Performance of Solid Propellants: A Review.
    Pang W; Deng C; Li H; DeLuca LT; Ouyang D; Xu H; Fan X
    Nanomaterials (Basel); 2021 Dec; 12(1):. PubMed ID: 35010082
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct deposit laminate nanocomposites with enhanced propellent properties.
    Li X; Guerieri P; Zhou W; Huang C; Zachariah MR
    ACS Appl Mater Interfaces; 2015 May; 7(17):9103-9. PubMed ID: 25815706
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Art of Framework Construction: Core-Shell Structured Micro-Energetic Materials.
    Duan B; Li J; Mo H; Lu X; Xu M; Wang B; Liu N
    Molecules; 2021 Sep; 26(18):. PubMed ID: 34577119
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hematite: A Good Catalyst for the Thermal Decomposition of Energetic Materials and the Application in Nano-Thermite.
    Li Y; Dang J; Ma Y; Ma H
    Molecules; 2023 Feb; 28(5):. PubMed ID: 36903281
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Research progress of EMOFs-based burning rate catalysts for solid propellants.
    Tan B; Yang X; Dou J; Duan B; Lu X; Liu N
    Front Chem; 2022; 10():1032163. PubMed ID: 36311438
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent Progress in Protective Membranes Fabricated via Electrospinning: Advanced Materials, Biomimetic Structures, and Functional Applications.
    Shi S; Si Y; Han Y; Wu T; Iqbal MI; Fei B; Li RKY; Hu J; Qu J
    Adv Mater; 2022 Apr; 34(17):e2107938. PubMed ID: 34969155
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quo Vadis, Nanothermite? A Review of Recent Progress.
    Polis M; Stolarczyk A; Glosz K; Jarosz T
    Materials (Basel); 2022 Apr; 15(9):. PubMed ID: 35591548
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact Energy Release Characteristics of PTFE/Al/CuO Reactive Materials Measured by a New Energy Release Testing Device.
    Ding L; Zhou J; Tang W; Ran X; Hu Y
    Polymers (Basel); 2019 Jan; 11(1):. PubMed ID: 30960133
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of fluoropolymer content on thermal and combustion performance of direct writing high-solid nanothermite composite.
    Jiao Y; Li S; Li G; Luo Y
    RSC Adv; 2022 Feb; 12(9):5612-5618. PubMed ID: 35425591
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Smart Electromagnetic Thermites: GO/rGO Nanoscale Thermite Composites with Thermally Switchable Microwave Ignitability.
    Barkley SJ; Lawrence AR; Zohair M; Smithhisler OL; Pint CL; Michael JB; Sippel TR
    ACS Appl Mater Interfaces; 2021 Aug; 13(33):39678-39688. PubMed ID: 34232011
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanofabrication Techniques: Challenges and Future Prospects.
    Tahir U; Shim YB; Kamran MA; Kim DI; Jeong MY
    J Nanosci Nanotechnol; 2021 Oct; 21(10):4981-5013. PubMed ID: 33875085
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrospun nanofiber-based thermite textiles and their reactive properties.
    Yan S; Jian G; Zachariah MR
    ACS Appl Mater Interfaces; 2012 Dec; 4(12):6432-5. PubMed ID: 23157316
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation of quasi-core/shell structured composite energetic materials to improve combustion performance.
    Wang R; Yang L; Zhang Z; Song W; Wang D; Guo C
    RSC Adv; 2023 Jun; 13(26):17834-17841. PubMed ID: 37323446
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.