BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

335 related articles for article (PubMed ID: 36985857)

  • 21. Force Sensing on Cells and Tissues by Atomic Force Microscopy.
    Holuigue H; Lorenc E; Chighizola M; Schulte C; Varinelli L; Deraco M; Guaglio M; Gariboldi M; Podestà A
    Sensors (Basel); 2022 Mar; 22(6):. PubMed ID: 35336366
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nanomechanics of Cells and Biomaterials Studied by Atomic Force Microscopy.
    Kilpatrick JI; Revenko I; Rodriguez BJ
    Adv Healthc Mater; 2015 Nov; 4(16):2456-74. PubMed ID: 26200464
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mechanical Properties of Isolated Primary Cilia Measured by Micro-tensile Test and Atomic Force Microscopy.
    Do TD; Katsuyoshi J; Cai H; Ohashi T
    Front Bioeng Biotechnol; 2021; 9():753805. PubMed ID: 34858960
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Force Spectroscopy Mapping of the Effect of Hydration on the Stiffness and Deformability of Phytoglycogen Nanoparticles.
    Baylis B; Shelton E; Grossutti M; Dutcher JR
    Biomacromolecules; 2021 Jul; 22(7):2985-2995. PubMed ID: 34085822
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nanomechanical Mapping of Hard Tissues by Atomic Force Microscopy: An Application to Cortical Bone.
    Bontempi M; Salamanna F; Capozza R; Visani A; Fini M; Gambardella A
    Materials (Basel); 2022 Oct; 15(21):. PubMed ID: 36363104
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Examination of Alzheimer's disease by a combination of electrostatic force and mechanical measurement.
    Zhao W; Cui W; Xu S; Cheong LZ; Shen C
    J Microsc; 2019 Jul; 275(1):66-72. PubMed ID: 31038737
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Standardized Nanomechanical Atomic Force Microscopy Procedure (SNAP) for Measuring Soft and Biological Samples.
    Schillers H; Rianna C; Schäpe J; Luque T; Doschke H; Wälte M; Uriarte JJ; Campillo N; Michanetzis GPA; Bobrowska J; Dumitru A; Herruzo ET; Bovio S; Parot P; Galluzzi M; Podestà A; Puricelli L; Scheuring S; Missirlis Y; Garcia R; Odorico M; Teulon JM; Lafont F; Lekka M; Rico F; Rigato A; Pellequer JL; Oberleithner H; Navajas D; Radmacher M
    Sci Rep; 2017 Jul; 7(1):5117. PubMed ID: 28698636
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Probing the Mechanical Properties of 2D Materials via Atomic-Force-Microscopy-Based Modulated Nanoindentation.
    Khan RM; Rejhon M; Li Y; Parashar N; Riedo E; Wixom RR; DelRio FW; Dingreville R
    Small Methods; 2024 Mar; 8(3):e2301043. PubMed ID: 38009526
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Experimental and Data Analysis Workflow for Soft Matter Nanoindentation.
    Ciccone G; Azevedo Gonzalez Oliva M; Antonovaite N; Lüchtefeld I; Salmeron-Sanchez M; Vassalli M
    J Vis Exp; 2022 Jan; (179):. PubMed ID: 35129176
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nanomechanics of biocompatible hollow thin-shell polymer microspheres.
    Glynos E; Koutsos V; McDicken WN; Moran CM; Pye SD; Ross JA; Sboros V
    Langmuir; 2009 Jul; 25(13):7514-22. PubMed ID: 19379000
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evaluating Young's Modulus of Single Yeast Cells Based on Compression Using an Atomic Force Microscope with a Flat Tip.
    Chang D; Hirate T; Uehara C; Maruyama H; Uozumi N; Arai F
    Microsc Microanal; 2021 Apr; 27(2):392-399. PubMed ID: 33446296
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bottom Effect in Atomic Force Microscopy Nanomechanics.
    Chiodini S; Ruiz-Rincón S; Garcia PD; Martin S; Kettelhoit K; Armenia I; Werz DB; Cea P
    Small; 2020 Sep; 16(35):e2000269. PubMed ID: 32761794
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nanomechanical Profiling of Aβ42 Oligomer-Induced Biological Changes in Single Hippocampus Neurons.
    Li D; Li J; Hu J; Tang M; Xiu P; Guo Y; Chen T; Mu N; Wang L; Zhang X; Liang G; Wang H; Fan C
    ACS Nano; 2023 Mar; 17(6):5517-5527. PubMed ID: 36881017
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Atomic Force Microscopy (AFM) As a Surface Mapping Tool in Microorganisms Resistant Toward Antimicrobials: A Mini-Review.
    Grzeszczuk Z; Rosillo A; Owens Ó; Bhattacharjee S
    Front Pharmacol; 2020; 11():517165. PubMed ID: 33123004
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Young's modulus of nanoconfined liquids?
    Khan SH; Hoffmann PM
    J Colloid Interface Sci; 2016 Jul; 473():93-9. PubMed ID: 27060229
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In situ nanomechanical properties of natural oil bodies studied using atomic force microscopy.
    Yang N; Su C; Zhang Y; Jia J; Leheny RL; Nishinari K; Fang Y; Phillips GO
    J Colloid Interface Sci; 2020 Jun; 570():362-374. PubMed ID: 32182477
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Atomic force microscopy and nanoindentation investigation of polydimethylsiloxane elastomeric substrate compliancy for various sputtered thin film morphologies.
    Maji D; Das S
    J Biomed Mater Res A; 2018 Mar; 106(3):725-737. PubMed ID: 29094469
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Wet Nanoindentation of the Solid Electrolyte Interphase on Thin Film Si Electrodes.
    Kuznetsov V; Zinn AH; Zampardi G; Borhani-Haghighi S; La Mantia F; Ludwig A; Schuhmann W; Ventosa E
    ACS Appl Mater Interfaces; 2015 Oct; 7(42):23554-63. PubMed ID: 26418194
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Functional dependence of resonant harmonics on nanomechanical parameters in dynamic mode atomic force microscopy.
    Gramazio F; Lorenzoni M; Pérez-Murano F; Rull Trinidad E; Staufer U; Fraxedas J
    Beilstein J Nanotechnol; 2017; 8():883-891. PubMed ID: 28503399
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Atomic force microscopy studies on the nanomechanical properties of Saccharomyces cerevisiae.
    Arfsten J; Leupold S; Bradtmöller C; Kampen I; Kwade A
    Colloids Surf B Biointerfaces; 2010 Aug; 79(1):284-90. PubMed ID: 20452756
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.