These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 36985887)

  • 1. Asymmetrical Plasmon Distribution in Hybrid AuAg Hollow/Solid Coded Nanotubes.
    Genç A; Patarroyo J; Sancho-Parramon J; Arenal R; Bastús NG; Puntes V; Arbiol J
    Nanomaterials (Basel); 2023 Mar; 13(6):. PubMed ID: 36985887
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabricating a Homogeneously Alloyed AuAg Shell on Au Nanorods to Achieve Strong, Stable, and Tunable Surface Plasmon Resonances.
    Huang J; Zhu Y; Liu C; Zhao Y; Liu Z; Hedhili MN; Fratalocchi A; Han Y
    Small; 2015 Oct; 11(39):5214-21. PubMed ID: 26270384
    [TBL] [Abstract][Full Text] [Related]  

  • 3. STEM-EELS analysis of multipole surface plasmon modes in symmetry-broken AuAg nanowire dimers.
    Schubert I; Sigle W; van Aken PA; Trautmann C; Toimil-Molares ME
    Nanoscale; 2015 Mar; 7(11):4935-41. PubMed ID: 25690984
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface etching-dependent geometry tailoring and multi-spectral information of Au@AuAg yolk-shell nanostructure with asymmetrical pyramidal core: The application in Co
    He Z; Zhu J; Li X; Weng GJ; Li JJ; Zhao JW
    J Colloid Interface Sci; 2022 Nov; 625():340-353. PubMed ID: 35717848
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The morphology regulation and plasmonic spectral properties of Au@AuAg yolk-shell nanorods with controlled interior gap.
    Zhu J; Zhang S; Weng GJ; Li JJ; Zhao JW
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Aug; 236():118343. PubMed ID: 32302959
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Ag Templates on the Formation of Au-Ag Hollow/Core-Shell Nanostructures.
    Tsai CH; Chen SY; Song JM; Haruta M; Kurata H
    Nanoscale Res Lett; 2015 Dec; 10(1):438. PubMed ID: 26563266
    [TBL] [Abstract][Full Text] [Related]  

  • 7. AuAg@CdS double-walled nanotubes: synthesis and nonlinear absorption properties.
    Guan S; Fu X; Tang Y; Peng Z
    Nanoscale; 2017 Jul; 9(29):10277-10284. PubMed ID: 28696448
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coupling of Surface Plasmon Modes and Refractive Index Sensitivity of Hollow Silver Nanoprism.
    Zhang KJ; Lu DB; Da B; Ding ZJ
    Sci Rep; 2018 Oct; 8(1):15993. PubMed ID: 30375478
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polydopamine protected hollow nanosphere with AuAg-nanoframe-core@Carbon@AuAg-nanocrystals-satellite hybrid nanostructure (AuAg@C@AuAg/PDA) for enhancing nanocatalysis.
    Duan J; Bai L; Xu K; Fang Q; Sun Y; Xu H; Leung KC; Xuan S
    J Hazard Mater; 2020 Feb; 384():121276. PubMed ID: 31600693
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation of one-dimensional Ag-Au solid solution colloids with Au nanorods as seeds, their alloying mechanisms, and surface plasmon resonances.
    Guo T; Tan Y
    Nanoscale; 2013 Jan; 5(2):561-9. PubMed ID: 23149628
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strain-Induced Modulation of Localized Surface Plasmon Resonance in Ultrathin Hexagonal Gold Nanoplates.
    Park GS; Min KS; Kwon H; Yoon S; Park S; Kwon JH; Lee S; Jo J; Kim M; Kim SK
    Adv Mater; 2021 Sep; 33(38):e2100653. PubMed ID: 34338357
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of AuAg/Ag/Au open nanoshells with optimized magnetic plasmon resonance and broken symmetry for enhancing second-harmonic generation.
    Zhou T; Ding SJ; Wu ZY; Yang DJ; Zhou LN; Zhao ZR; Ma L; Wang W; Ma S; Wang SM; Zou JN; Zhou L; Wang QQ
    Nanoscale; 2021 Dec; 13(46):19527-19536. PubMed ID: 34806104
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solid-to-Hollow Conversion of Silver Nanocrystals by Surface-Protected Etching.
    Liu K; Liu H; Fan Q; Zhang S; Liu Z; Han L; Li H; Gao C
    Chemistry; 2018 Dec; 24(71):19038-19044. PubMed ID: 30260045
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hybrid Graphene-Supported Aluminum Plasmonics.
    Elibol K; van Aken PA
    ACS Nano; 2022 Aug; 16(8):11931-11943. PubMed ID: 35904978
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Localized surface plasmon resonances in spatially dispersive nano-objects: phenomenological treatise.
    Ginzburg P; Zayats AV
    ACS Nano; 2013 May; 7(5):4334-42. PubMed ID: 23570309
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Localized surface plasmon resonances arising from free carriers in doped quantum dots.
    Luther JM; Jain PK; Ewers T; Alivisatos AP
    Nat Mater; 2011 May; 10(5):361-6. PubMed ID: 21478881
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Manipulating acoustic and plasmonic modes in gold nanostars.
    Chatterjee S; Ricciardi L; Deitz JI; Williams REA; McComb DW; Strangi G
    Nanoscale Adv; 2019 Jul; 1(7):2690-2698. PubMed ID: 36132721
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Imaging Plasmon Hybridization of Fano Resonances via Hot-Electron-Mediated Absorption Mapping.
    Simoncelli S; Li Y; Cortés E; Maier SA
    Nano Lett; 2018 Jun; 18(6):3400-3406. PubMed ID: 29715431
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional imaging of localized surface plasmon resonances of metal nanoparticles.
    Nicoletti O; de la Peña F; Leary RK; Holland DJ; Ducati C; Midgley PA
    Nature; 2013 Oct; 502(7469):80-4. PubMed ID: 24091976
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.