These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 36985925)

  • 1. Post-Processing Trimming of Silicon Photonic Devices Using Femtosecond Laser.
    Wu Y; Shang H; Zheng X; Chu T
    Nanomaterials (Basel); 2023 Mar; 13(6):. PubMed ID: 36985925
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-time monitoring and gradient feedback enable accurate trimming of ion-implanted silicon photonic devices.
    Chen B; Yu X; Chen X; Milosevic MM; Thomson DJ; Khokhar AZ; Saito S; Muskens OL; Reed GT
    Opt Express; 2018 Sep; 26(19):24953-24963. PubMed ID: 30469603
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrogenated amorphous silicon photonic device trimming by UV-irradiation.
    Lipka T; Kiepsch M; Trieu HK; Müller J
    Opt Express; 2014 May; 22(10):12122-32. PubMed ID: 24921332
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ge Ion Implanted Photonic Devices and Annealing for Emerging Applications.
    Yu X; Chen X; Milosevic MM; Shen W; Topley R; Chen B; Yan X; Cao W; Thomson DJ; Saito S; Peacock AC; Muskens OL; Reed GT
    Micromachines (Basel); 2022 Feb; 13(2):. PubMed ID: 35208415
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trimming of silicon-on-insulator ring-resonators via localized laser annealing.
    Biryukova V; Sharp GJ; Klitis C; Sorel M
    Opt Express; 2020 Apr; 28(8):11156-11164. PubMed ID: 32403632
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication-robust silicon photonic devices in standard sub-micron silicon-on-insulator processes.
    Rizzo A; Dave U; Novick A; Freitas A; Roberts SP; James A; Lipson M; Bergman K
    Opt Lett; 2023 Jan; 48(2):215-218. PubMed ID: 36638421
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Athermal and wavelength-trimmable photonic filters based on TiO₂-cladded amorphous-SOI.
    Lipka T; Moldenhauer L; Müller J; Trieu HK
    Opt Express; 2015 Jul; 23(15):20075-88. PubMed ID: 26367665
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Localized in situ cladding annealing for post-fabrication trimming of silicon photonic integrated circuits.
    Spector S; Knecht JM; Juodawlkis PW
    Opt Express; 2016 Mar; 24(6):5996-6003. PubMed ID: 27136793
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controllable Photonic Structures on Silicon-on-Insulator Devices Fabricated Using Femtosecond Laser Lithography.
    Huang J; Jiang L; Li X; Zhou S; Gao S; Li P; Huang L; Wang K; Qu L
    ACS Appl Mater Interfaces; 2021 Sep; 13(36):43622-43631. PubMed ID: 34459593
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mach-Zehnder silicon-photonic switch with low random phase errors.
    Song L; Li H; Dai D
    Opt Lett; 2021 Jan; 46(1):78-81. PubMed ID: 33362021
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trimming of silicon-on-insulator ring resonators with a polymerizable liquid crystal cladding.
    Lambert S; De Cort W; Beeckman J; Neyts K; Baets R
    Opt Lett; 2012 May; 37(9):1475-7. PubMed ID: 22555709
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of coupled mode photonic devices in glass by nonlinear femtosecond laser materials processing.
    Minoshima K; Kowalevicz A; Ippen E; Fujimoto J
    Opt Express; 2002 Jul; 10(15):645-52. PubMed ID: 19451917
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Permanent fine tuning of silicon microring devices by femtosecond laser surface amorphization and ablation.
    Bachman D; Chen Z; Fedosejevs R; Tsui YY; Van V
    Opt Express; 2013 May; 21(9):11048-56. PubMed ID: 23669961
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High energy irradiation effects on silicon photonic passive devices.
    Zhou Y; Bi D; Wang S; Wu L; Huang Y; Zhang E; Fleetwood DM; Wu A
    Opt Express; 2022 Jan; 30(3):4017-4027. PubMed ID: 35209648
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hybrid aluminum nitride and silicon devices for integrated photonics.
    Xu Z; Zhang Y; Shen J; Dong Y; Wu L; Xu J; Su Y
    Opt Lett; 2022 Oct; 47(19):4925-4928. PubMed ID: 36181152
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accurate post-fabrication trimming of ultra-compact resonators on silicon.
    Atabaki AH; Eftekhar AA; Askari M; Adibi A
    Opt Express; 2013 Jun; 21(12):14139-45. PubMed ID: 23787604
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A high-quality Mach-Zehnder interferometer fiber sensor by femtosecond laser one-step processing.
    Zhao L; Jiang L; Wang S; Xiao H; Lu Y; Tsai HL
    Sensors (Basel); 2011; 11(1):54-61. PubMed ID: 22346567
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Precise electron beam-based target-wavelength trimming for frequency conversion in integrated photonic resonators.
    Thiel L; Logan AD; Chakravarthi S; Shree S; Hestroffer K; Hatami F; Fu KC
    Opt Express; 2022 Feb; 30(5):6921-6933. PubMed ID: 35299466
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Narrow-spectral-linewidth silicon photonic wavelength-tunable laser with highly asymmetric Mach-Zehnder interferometer.
    Tang R; Kita T; Yamada H
    Opt Lett; 2015 Apr; 40(7):1504-7. PubMed ID: 25831370
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advanced and versatile interferometric technique for the characterization of photonic integrated devices.
    Bru LA; Pastor D; Muñoz P
    Opt Express; 2021 Oct; 29(22):36503-36515. PubMed ID: 34809060
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.