These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 3698640)
1. Vitrification of human monocytes. Takahashi T; Hirsh A; Erbe EF; Bross JB; Steere RL; Williams RJ Cryobiology; 1986 Apr; 23(2):103-15. PubMed ID: 3698640 [TBL] [Abstract][Full Text] [Related]
2. Analysis of cryopreservation media thermophysical characteristics after ultra-rapid cooling through differential scanning calorimetry. Amini M; Benson JD Cryobiology; 2024 Sep; 116():104939. PubMed ID: 38971573 [TBL] [Abstract][Full Text] [Related]
3. Calorimetric studies of the state of water in deeply frozen human monocytes. Takahashi T; Hirsh A Biophys J; 1985 Mar; 47(3):373-80. PubMed ID: 3978207 [TBL] [Abstract][Full Text] [Related]
4. Survival of corneal endothelium following exposure to a vitrification solution. Armitage WJ Cryobiology; 1989 Aug; 26(4):318-27. PubMed ID: 2766779 [TBL] [Abstract][Full Text] [Related]
5. Stabilization of frozen Lactobacillus delbrueckii subsp. bulgaricus in glycerol suspensions: Freezing kinetics and storage temperature effects. Fonseca F; Marin M; Morris GJ Appl Environ Microbiol; 2006 Oct; 72(10):6474-82. PubMed ID: 17021195 [TBL] [Abstract][Full Text] [Related]
6. Mechanism of cryoprotection by extracellular polymeric solutes. Takahashi T; Hirsh A; Erbe E; Williams RJ Biophys J; 1988 Sep; 54(3):509-18. PubMed ID: 2462928 [TBL] [Abstract][Full Text] [Related]
7. A theoretical model of intracellular devitrification. Karlsson JO Cryobiology; 2001 May; 42(3):154-69. PubMed ID: 11578115 [TBL] [Abstract][Full Text] [Related]
8. Implications of storage and handling conditions on glass transition and potential devitrification of oocytes and embryos. Sansinena M; Santos MV; Taminelli G; Zaritky N Theriogenology; 2014 Aug; 82(3):373-8. PubMed ID: 24861980 [TBL] [Abstract][Full Text] [Related]
9. Contributions of cooling and warming rate and developmental stage to the survival of Drosophila embryos cooled to -205 degrees C. Mazur P; Cole KW; Schreuders PD; Mahowald AP Cryobiology; 1993 Feb; 30(1):45-73. PubMed ID: 8440129 [TBL] [Abstract][Full Text] [Related]
15. Analysis of cryoprotectant, cooling rate and in situ dilution using conventional freezing or vitrification for cryopreserving sheep embryos. Schiewe MC; Rall WF; Stuart LD; Wildt DE Theriogenology; 1991 Aug; 36(2):279-93. PubMed ID: 16727000 [TBL] [Abstract][Full Text] [Related]
17. The effect of temperature at which slow cooling is terminated and of thawing rate on the survival of one-cell mouse embryos frozen in dimethyl sulfoxide or 1,2-propanediol solutions. Van den Abbeel E; Van der Elst J; Van Steirteghem AC Cryobiology; 1994 Oct; 31(5):423-33. PubMed ID: 7988151 [TBL] [Abstract][Full Text] [Related]
18. Cryopreservation of rat blastocysts by vitrification. Kono T; Suzuki O; Tsunoda Y Cryobiology; 1988 Apr; 25(2):170-3. PubMed ID: 3371062 [TBL] [Abstract][Full Text] [Related]
19. Subzero water permeability parameters and optimal freezing rates for sperm cells of the southern platyfish, Xiphophorus maculatus. Pinisetty D; Huang C; Dong Q; Tiersch TR; Devireddy RV Cryobiology; 2005 Jun; 50(3):250-63. PubMed ID: 15925577 [TBL] [Abstract][Full Text] [Related]
20. Effect of warming rate on mouse embryos frozen and thawed in glycerol. Rall WF; Polge C J Reprod Fertil; 1984 Jan; 70(1):285-92. PubMed ID: 6363690 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]