These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 36987026)

  • 1. Cowpea Constraints and Breeding in Europe.
    Lazaridi E; Bebeli PJ
    Plants (Basel); 2023 Mar; 12(6):. PubMed ID: 36987026
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic Diversity and Population Structure of Cowpea (
    Guimarães JB; Nunes C; Pereira G; Gomes A; Nhantumbo N; Cabrita P; Matos J; Simões F; Veloso MM
    Plants (Basel); 2023 Feb; 12(4):. PubMed ID: 36840194
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phenotypic diversity and evaluation of fresh pods of cowpea landraces from Southern Europe.
    Lazaridi E; Ntatsi G; Fernández JA; Karapanos I; Carnide V; Savvas D; Bebeli PJ
    J Sci Food Agric; 2017 Oct; 97(13):4326-4333. PubMed ID: 28182289
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic diversity and structure of Iberian Peninsula cowpeas compared to world-wide cowpea accessions using high density SNP markers.
    Carvalho M; Muñoz-Amatriaín M; Castro I; Lino-Neto T; Matos M; Egea-Cortines M; Rosa E; Close T; Carnide V
    BMC Genomics; 2017 Nov; 18(1):891. PubMed ID: 29162034
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Introgression Breeding in Cowpea [
    Boukar O; Abberton M; Oyatomi O; Togola A; Tripathi L; Fatokun C
    Front Plant Sci; 2020; 11():567425. PubMed ID: 33072144
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of Cowpea Landraces under a Mediterranean Climate.
    Lazaridi E; Bebeli PJ
    Plants (Basel); 2023 May; 12(10):. PubMed ID: 37653864
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Breeding of Vegetable Cowpea for Nutrition and Climate Resilience in Sub-Saharan Africa: Progress, Opportunities, and Challenges.
    Mekonnen TW; Gerrano AS; Mbuma NW; Labuschagne MT
    Plants (Basel); 2022 Jun; 11(12):. PubMed ID: 35736733
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assembled genomic and tissue-specific transcriptomic data resources for two genetically distinct lines of Cowpea (
    Spriggs A; Henderson ST; Hand ML; Johnson SD; Taylor JM; Koltunow A
    Gates Open Res; 2018; 2():7. PubMed ID: 29528046
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of Genetic Diversity and Population Structure of Cowpea (
    Gumede MT; Gerrano AS; Amelework AB; Modi AT
    Plants (Basel); 2022 Dec; 11(24):. PubMed ID: 36559592
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A compendium of transcription factor and Transcriptionally active protein coding gene families in cowpea (Vigna unguiculata L.).
    Misra VA; Wang Y; Timko MP
    BMC Genomics; 2017 Nov; 18(1):898. PubMed ID: 29166879
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selection of Novel Cowpea Genotypes Derived through Gamma Irradiation.
    Horn LN; Ghebrehiwot HM; Shimelis HA
    Front Plant Sci; 2016; 7():262. PubMed ID: 27148275
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-Wide Association Study Reveals Candidate Genes for Flowering Time in Cowpea (
    Paudel D; Dareus R; Rosenwald J; Muñoz-Amatriaín M; Rios EF
    Front Genet; 2021; 12():667038. PubMed ID: 34220944
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Variation in relative water content, proline accumulation and stress gene expression in two cowpea landraces under drought.
    Zegaoui Z; Planchais S; Cabassa C; Djebbar R; Belbachir OA; Carol P
    J Plant Physiol; 2017 Nov; 218():26-34. PubMed ID: 28763706
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Constraints and Prospects of Improving Cowpea Productivity to Ensure Food, Nutritional Security and Environmental Sustainability.
    Omomowo OI; Babalola OO
    Front Plant Sci; 2021; 12():751731. PubMed ID: 34745184
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DArTSeq SNP-based markers revealed high genetic diversity and structured population in Ethiopian cowpea [Vigna unguiculata (L.) Walp] germplasms.
    Ketema S; Tesfaye B; Keneni G; Amsalu Fenta B; Assefa E; Greliche N; Machuka E; Yao N
    PLoS One; 2020; 15(10):e0239122. PubMed ID: 33031381
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-Wide Identification and Characterization of Major RNAi Genes Highlighting Their Associated Factors in Cowpea (
    Hasan MN; Mosharaf MP; Uddin KS; Das KR; Sultana N; Noorunnahar M; Naim D; Mollah MNH
    Biomed Res Int; 2023; 2023():8832406. PubMed ID: 38046903
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mapping patterns of abiotic and biotic stress resilience uncovers conservation gaps and breeding potential of Vigna wild relatives.
    van Zonneveld M; Rakha M; Tan SY; Chou YY; Chang CH; Yen JY; Schafleitner R; Nair R; Naito K; Solberg SØ
    Sci Rep; 2020 Feb; 10(1):2111. PubMed ID: 32034221
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Production of intraspecific F1 hybrids between wild and cultivated accessions of cowpea (Vigna unguiculata (L.) walp.) using conventional methods.
    Lelou B; Van Damme P
    Commun Agric Appl Biol Sci; 2006; 71(4):57-75. PubMed ID: 17612353
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Broad-based root-knot nematode resistance identified in cowpea gene-pool two.
    Ndeve AD; Matthews WC; Santos JRP; Huynh BL; Roberts PA
    J Nematol; 2018; 50(4):545-558. PubMed ID: 31094157
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Warm Season Grain Legume Landraces From the South of Europe for Germplasm Conservation and Genetic Improvement.
    De Ron AM; Bebeli PJ; Negri V; Vaz Patto MC; Revilla P
    Front Plant Sci; 2018; 9():1524. PubMed ID: 30405662
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.