These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 36987110)

  • 1. Off-Stoichiometry Thiol-Ene Polymers: Inclusion of Anchor Groups Using Allylsilanes.
    Puchnin K; Ryazantsev D; Latipov E; Grudtsov V; Kuznetsov A
    Polymers (Basel); 2023 Mar; 15(6):. PubMed ID: 36987110
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Off-Stoichiometry Thiol-Enes Polymers Containing Silane Groups for Advanced Packaging Technologies.
    Puchnin K; Ryazantsev D; Grudtsov V; Golubev Y; Kuznetsov A
    Polymers (Basel); 2022 May; 14(10):. PubMed ID: 35631871
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biocompatible "click" wafer bonding for microfluidic devices.
    Saharil F; Carlborg CF; Haraldsson T; van der Wijngaart W
    Lab Chip; 2012 Sep; 12(17):3032-5. PubMed ID: 22760578
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Beyond PDMS: off-stoichiometry thiol-ene (OSTE) based soft lithography for rapid prototyping of microfluidic devices.
    Carlborg CF; Haraldsson T; Öberg K; Malkoch M; van der Wijngaart W
    Lab Chip; 2011 Sep; 11(18):3136-47. PubMed ID: 21804987
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancing the biocompatibility of the polyurethane methacrylate and off-stoichiometry thiol-ene polymers by argon and nitrogen plasma treatment.
    Chen TF; Siow KS; Ng PY; Majlis BY
    Mater Sci Eng C Mater Biol Appl; 2017 Oct; 79():613-621. PubMed ID: 28629060
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conformable neural interface based on off-stoichiometry thiol-ene-epoxy thermosets.
    Borda E; Medagoda DI; Airaghi Leccardi MJI; Zollinger EG; Ghezzi D
    Biomaterials; 2023 Feb; 293():121979. PubMed ID: 36586146
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lung on a Chip Development from Off-Stoichiometry Thiol-Ene Polymer.
    Rimsa R; Galvanovskis A; Plume J; Rumnieks F; Grindulis K; Paidere G; Erentraute S; Mozolevskis G; Abols A
    Micromachines (Basel); 2021 May; 12(5):. PubMed ID: 34064627
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of Off-Stoichiometry Microfluidic Devices for Bioanalytical Applications.
    de Campos RPS; Campos CDM; Almeida GB; da Silva JAF
    IEEE Trans Biomed Circuits Syst; 2017 Dec; 11(6):1470-1477. PubMed ID: 29293428
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cell adhesion pattern created by OSTE polymers.
    Liu W; Li Y; Ding X
    Biofabrication; 2017 Apr; 9(2):025006. PubMed ID: 28291020
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Facile Fabrication of Silk Fibroin/Off-Stoichiometry Thiol-Ene (OSTE) Microneedle Array Patches.
    Yang Y; Xiao Z; Sun L; Feng Z; Chen Z; Guo W
    Micromachines (Basel); 2023 Feb; 14(2):. PubMed ID: 36838088
    [TBL] [Abstract][Full Text] [Related]  

  • 11. OSTE+ for in situ SAXS analysis with droplet microfluidic devices.
    Lange T; Charton S; Bizien T; Testard F; Malloggi F
    Lab Chip; 2020 Aug; 20(16):2990-3000. PubMed ID: 32696785
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biocompatibility of a polymer based on Off-Stoichiometry Thiol-Enes + Epoxy (OSTE+) for neural implants.
    Ejserholm F; Stegmayr J; Bauer P; Johansson F; Wallman L; Bengtsson M; Oredsson S
    Biomater Res; 2015; 19():19. PubMed ID: 26396744
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface functionalized thiol-ene waveguides for fluorescence biosensing in microfluidic devices.
    Feidenhans'l NA; Lafleur JP; Jensen TG; Kutter JP
    Electrophoresis; 2014 Feb; 35(2-3):282-8. PubMed ID: 23983194
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of rigid microstructures with thiol-ene-based soft lithography for continuous-flow cell lysis.
    Burke JM; Pandit KR; Goertz JP; White IM
    Biomicrofluidics; 2014 Sep; 8(5):056503. PubMed ID: 25538814
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of Biomolecule Microarrays Using Rapid Photochemical Surface Patterning in Thiol-Ene-Based Microfluidic Devices.
    Jönsson A; Lafleur JP
    Methods Mol Biol; 2018; 1771():171-182. PubMed ID: 29633213
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid photochemical surface patterning of proteins in thiol-ene based microfluidic devices.
    Lafleur JP; Kwapiszewski R; Jensen TG; Kutter JP
    Analyst; 2013 Feb; 138(3):845-9. PubMed ID: 23193537
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Correlation between bond strength and nanomechanical properties of adhesive interface.
    Freitas PH; Giannini M; França R; Correr AB; Correr-Sobrinho L; Consani S
    Clin Oral Investig; 2017 May; 21(4):1055-1062. PubMed ID: 27221518
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of biomedical porous titanium filled with medical polymer by in-situ polymerization of monomer solution infiltrated into pores.
    Nakai M; Niinomi M; Akahori T; Tsutsumi H; Itsuno S; Haraguchi N; Itoh Y; Ogasawara T; Onishi T; Shindoh T
    J Mech Behav Biomed Mater; 2010 Jan; 3(1):41-50. PubMed ID: 19878901
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thiol-Ene Based Polymers as Versatile Materials for Microfluidic Devices for Life Sciences Applications.
    Sticker D; Geczy R; Häfeli UO; Kutter JP
    ACS Appl Mater Interfaces; 2020 Mar; 12(9):10080-10095. PubMed ID: 32048822
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The material-enabled oxygen control in thiol-ene microfluidic channels and its feasibility for subcellular drug metabolism assays under hypoxia
    Kiiski I; Järvinen P; Ollikainen E; Jokinen V; Sikanen T
    Lab Chip; 2021 May; 21(9):1820-1831. PubMed ID: 33949410
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.