These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 36987176)

  • 1. Fabrication of Solvent-Free PCL/β-TCP Composite Fiber for 3D Printing: Physiochemical and Biological Investigation.
    Ngo ST; Lee WF; Wu YF; Salamanca E; Aung LM; Chao YQ; Tsao TC; Hseuh HW; Lee YH; Wang CC; Chang WJ
    Polymers (Basel); 2023 Mar; 15(6):. PubMed ID: 36987176
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D printed polycaprolactone/β-tricalcium phosphate/carbon nanotube composite - Physical properties and biocompatibility.
    Wang Y; Liu C; Song T; Cao Z; Wang T
    Heliyon; 2024 Mar; 10(5):e26071. PubMed ID: 38468962
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Composite PCL Scaffold With 70% β-TCP as Suitable Structure for Bone Replacement.
    Ghezzi B; Matera B; Meglioli M; Rossi F; Duraccio D; Faga MG; Zappettini A; Macaluso GM; Lumetti S
    Int Dent J; 2024 Apr; ():. PubMed ID: 38614878
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D-printed polycaprolactone scaffold mixed with β-tricalcium phosphate as a bone regenerative material in rabbit calvarial defects.
    Pae HC; Kang JH; Cha JK; Lee JS; Paik JW; Jung UW; Kim BH; Choi SH
    J Biomed Mater Res B Appl Biomater; 2019 May; 107(4):1254-1263. PubMed ID: 30300967
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D-printed polycaprolactone scaffolds coated with beta tricalcium phosphate for bone regeneration.
    Javkhlan Z; Hsu SH; Chen RS; Chen MH
    J Formos Med Assoc; 2024 Jan; 123(1):71-77. PubMed ID: 37709573
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PCL/β-TCP Composite Scaffolds Exhibit Positive Osteogenic Differentiation with Mechanical Stimulation.
    Park SH; Park SA; Kang YG; Shin JW; Park YS; Gu SR; Wu YR; Wei J; Shin JW
    Tissue Eng Regen Med; 2017 Aug; 14(4):349-358. PubMed ID: 30603491
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Osteogenesis of adipose-derived stem cells on polycaprolactone-β-tricalcium phosphate scaffold fabricated via selective laser sintering and surface coating with collagen type I.
    Liao HT; Lee MY; Tsai WW; Wang HC; Lu WC
    J Tissue Eng Regen Med; 2016 Oct; 10(10):E337-E353. PubMed ID: 23955935
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D-printed MgO nanoparticle loaded polycaprolactone β-tricalcium phosphate composite scaffold for bone tissue engineering applications: In-vitro and in-vivo evaluation.
    Safiaghdam H; Nokhbatolfoghahaei H; Farzad-Mohajeri S; Dehghan MM; Farajpour H; Aminianfar H; Bakhtiari Z; Jabbari Fakhr M; Hosseinzadeh S; Khojasteh A
    J Biomed Mater Res A; 2023 Mar; 111(3):322-339. PubMed ID: 36334300
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amine Plasma-Polymerization of 3D Polycaprolactone/β-Tricalcium Phosphate Scaffold to Improving Osteogenic Differentiation In Vitro.
    Kim HY; Kim BH; Kim MS
    Materials (Basel); 2022 Jan; 15(1):. PubMed ID: 35009509
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D-Printed Barrier Membrane Using Mixture of Polycaprolactone and Beta-Tricalcium Phosphate for Regeneration of Rabbit Calvarial Defects.
    Lee JY; Park JY; Hong IP; Jeon SH; Cha JK; Paik JW; Choi SH
    Materials (Basel); 2021 Jun; 14(12):. PubMed ID: 34198549
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative Efficacies of Collagen-Based 3D Printed PCL/PLGA/β-TCP Composite Block Bone Grafts and Biphasic Calcium Phosphate Bone Substitute for Bone Regeneration.
    Hwang KS; Choi JW; Kim JH; Chung HY; Jin S; Shim JH; Yun WS; Jeong CM; Huh JB
    Materials (Basel); 2017 Apr; 10(4):. PubMed ID: 28772780
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional hierarchical composite scaffolds consisting of polycaprolactone, β-tricalcium phosphate, and collagen nanofibers: fabrication, physical properties, and in vitro cell activity for bone tissue regeneration.
    Yeo M; Lee H; Kim G
    Biomacromolecules; 2011 Feb; 12(2):502-10. PubMed ID: 21189025
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In Vitro and In Vivo Study of a Novel Nanoscale Demineralized Bone Matrix Coated PCL/β-TCP Scaffold for Bone Regeneration.
    Yuan B; Wang Z; Zhao Y; Tang Y; Zhou S; Sun Y; Chen X
    Macromol Biosci; 2021 Mar; 21(3):e2000336. PubMed ID: 33346401
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficacy of rhBMP-2 Loaded PCL/
    Bae EB; Park KH; Shim JH; Chung HY; Choi JW; Lee JJ; Kim CH; Jeon HJ; Kang SS; Huh JB
    Biomed Res Int; 2018; 2018():2876135. PubMed ID: 29682530
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparison between β-tricalcium phosphate and chitosan poly-caprolactone-based 3D melt extruded composite scaffolds.
    Yoshida M; Turner PR; McAdam CJ; Ali MA; Cabral JD
    Biopolymers; 2022 Apr; 113(4):e23482. PubMed ID: 34812488
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of three-dimensionally printed polycaprolactone/β-tricalcium phosphate scaffold on osteogenic differentiation of adipose tissue- and bone marrow-derived stem cells.
    Park H; Kim JS; Oh EJ; Kim TJ; Kim HM; Shim JH; Yoon WS; Huh JB; Moon SH; Kang SS; Chung HY
    Arch Craniofac Surg; 2018 Sep; 19(3):181-189. PubMed ID: 30282427
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Systematic characterization of 3D-printed PCL/β-TCP scaffolds for biomedical devices and bone tissue engineering: influence of composition and porosity.
    Bruyas A; Lou F; Stahl AM; Gardner M; Maloney W; Goodman S; Yang YP
    J Mater Res; 2018 Jul; 33(14):1948-1959. PubMed ID: 30364693
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative studies on thin polycaprolactone-tricalcium phosphate composite scaffolds and its interaction with mesenchymal stem cells.
    Janarthanan G; Kim IG; Chung EJ; Noh I
    Biomater Res; 2019; 23():1. PubMed ID: 30788137
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biocompatibility and biodegradation studies of PCL/β-TCP bone tissue scaffold fabricated by structural porogen method.
    Lu L; Zhang Q; Wootton D; Chiou R; Li D; Lu B; Lelkes P; Zhou J
    J Mater Sci Mater Med; 2012 Sep; 23(9):2217-26. PubMed ID: 22669285
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Early In Vivo Osteogenic and Inflammatory Response of 3D Printed Polycaprolactone/Carbon Nanotube/Hydroxyapatite/Tricalcium Phosphate Composite Scaffolds.
    Nalesso PRL; Vedovatto M; Gregório JES; Huang B; Vyas C; Santamaria-Jr M; Bártolo P; Caetano GF
    Polymers (Basel); 2023 Jul; 15(13):. PubMed ID: 37447597
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.