These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 36987213)
1. Rheological Behavior and Printability Study of Tri-Calcium Phosphate Ceramic Inks for Direct Ink Writing Method. Paul D L B; Praveen AS; Čepová L; Elangovan M Polymers (Basel); 2023 Mar; 15(6):. PubMed ID: 36987213 [TBL] [Abstract][Full Text] [Related]
2. Development of bioinks for 3D printing microporous, sintered calcium phosphate scaffolds. Montelongo SA; Chiou G; Ong JL; Bizios R; Guda T J Mater Sci Mater Med; 2021 Aug; 32(8):94. PubMed ID: 34390404 [TBL] [Abstract][Full Text] [Related]
3. Robocasting of advanced ceramics: ink optimization and protocol to predict the printing parameters - A review. Lamnini S; Elsayed H; Lakhdar Y; Baino F; Smeacetto F; Bernardo E Heliyon; 2022 Sep; 8(9):e10651. PubMed ID: 36164511 [TBL] [Abstract][Full Text] [Related]
4. A rheological approach to assess the printability of thermosensitive chitosan-based biomaterial inks. Rahimnejad M; Labonté-Dupuis T; Demarquette NR; Lerouge S Biomed Mater; 2020 Nov; 16(1):015003. PubMed ID: 33245047 [TBL] [Abstract][Full Text] [Related]
5. Balancing Functionality and Printability: High-Loading Polymer Resins for Direct Ink Writing. Legett SA; Torres X; Schmalzer AM; Pacheco A; Stockdale JR; Talley S; Robison T; Labouriau A Polymers (Basel); 2022 Nov; 14(21):. PubMed ID: 36365651 [TBL] [Abstract][Full Text] [Related]
6. Direct ink writing of porous titanium (Ti6Al4V) lattice structures. Elsayed H; Rebesan P; Giacomello G; Pasetto M; Gardin C; Ferroni L; Zavan B; Biasetto L Mater Sci Eng C Mater Biol Appl; 2019 Oct; 103():109794. PubMed ID: 31349412 [TBL] [Abstract][Full Text] [Related]
7. Toughening robocast chitosan/biphasic calcium phosphate composite scaffolds with silk fibroin: Tuning printable inks and scaffold structure for bone regeneration. Torres PMC; Ribeiro N; Nunes CMM; Rodrigues AFM; Sousa A; Olhero SM Biomater Adv; 2022 Mar; 134():112690. PubMed ID: 35581087 [TBL] [Abstract][Full Text] [Related]
8. Shape fidelity, mechanical and biological performance of 3D printed polycaprolactone-bioactive glass composite scaffolds. Baier RV; Contreras Raggio JI; Giovanetti CM; Palza H; Burda I; Terrasi G; Weisse B; De Freitas GS; Nyström G; Vivanco JF; Aiyangar AK Biomater Adv; 2022 Mar; 134():112540. PubMed ID: 35525740 [TBL] [Abstract][Full Text] [Related]
9. Optimization and Characterization of Preceramic Inks for Direct Ink Writing of Ceramic Matrix Composite Structures. Franchin G; Maden HS; Wahl L; Baliello A; Pasetto M; Colombo P Materials (Basel); 2018 Mar; 11(4):. PubMed ID: 29597310 [TBL] [Abstract][Full Text] [Related]
10. The Effects of Solid Particle Containing Inks on the Printing Quality of Porous Pharmaceutical Structures Fabricated by 3D Semi-Solid Extrusion Printing. Teoh XY; Zhang B; Belton P; Chan SY; Qi S Pharm Res; 2022 Jun; 39(6):1267-1279. PubMed ID: 35661083 [TBL] [Abstract][Full Text] [Related]
11. Bioactive glass-reinforced bioceramic ink writing scaffolds: sintering, microstructure and mechanical behavior. Shao H; Yang X; He Y; Fu J; Liu L; Ma L; Zhang L; Yang G; Gao C; Gou Z Biofabrication; 2015 Sep; 7(3):035010. PubMed ID: 26355654 [TBL] [Abstract][Full Text] [Related]
12. Linking Rheology and Printability for Dense and Strong Ceramics by Direct Ink Writing. M'Barki A; Bocquet L; Stevenson A Sci Rep; 2017 Jul; 7(1):6017. PubMed ID: 28729671 [TBL] [Abstract][Full Text] [Related]
13. Composite Inks for Extrusion Printing of Biological and Biomedical Constructs. Ravanbakhsh H; Bao G; Luo Z; Mongeau LG; Zhang YS ACS Biomater Sci Eng; 2021 Sep; 7(9):4009-4026. PubMed ID: 34510905 [TBL] [Abstract][Full Text] [Related]
14. Direct ink writing of highly porous and strong glass scaffolds for load-bearing bone defects repair and regeneration. Fu Q; Saiz E; Tomsia AP Acta Biomater; 2011 Oct; 7(10):3547-54. PubMed ID: 21745606 [TBL] [Abstract][Full Text] [Related]
15. Printability of Poly(lactic acid) Ink by Embedded 3D Printing Karyappa R; Liu H; Zhu Q; Hashimoto M ACS Appl Mater Interfaces; 2023 May; 15(17):21575-21584. PubMed ID: 37078653 [TBL] [Abstract][Full Text] [Related]
16. Simple additive manufacturing of an osteoconductive ceramic using suspension melt extrusion. Slots C; Jensen MB; Ditzel N; Hedegaard MA; Borg SW; Albrektsen O; Thygesen T; Kassem M; Andersen MØ Dent Mater; 2017 Feb; 33(2):198-208. PubMed ID: 27979378 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of the Morphological Effects of Hydroxyapatite Nanoparticles on the Rheological Properties and Printability of Hydroxyapatite/Polycaprolactone Nanocomposite Inks and Final Scaffold Features. Kazemi M; Mirzadeh M; Esmaeili H; Kazemi E; Rafienia M; Poursamar SA 3D Print Addit Manuf; 2024 Feb; 11(1):132-142. PubMed ID: 38389680 [TBL] [Abstract][Full Text] [Related]
19. Effective production of multifunctional magnetic-sensitive biomaterial by an extrusion-based additive manufacturing technique. Rodrigues AFM; Torres PMC; Barros MJS; Presa R; Ribeiro N; Abrantes JCC; Belo JH; Amaral JS; Amaral VS; Bañobre-López M; Bettencourt A; Sousa A; Olhero SM Biomed Mater; 2020 Dec; 16(1):015011. PubMed ID: 32750692 [TBL] [Abstract][Full Text] [Related]
20. Effect of Hydrocolloids on Rheological Properties and Printability of Vegetable Inks for 3D Food Printing. Kim HW; Lee JH; Park SM; Lee MH; Lee IW; Doh HS; Park HJ J Food Sci; 2018 Dec; 83(12):2923-2932. PubMed ID: 30506688 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]