These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 36987256)
41. Effects of coagulating conditions on the crystallinity, orientation and mechanical properties of regenerated cellulose fibers. Wang B; Nie Y; Kang Z; Liu X Int J Biol Macromol; 2023 Jan; 225():1374-1383. PubMed ID: 36435466 [TBL] [Abstract][Full Text] [Related]
43. Effects of Different Delignification and Drying Methods on Fiber Properties of Moso Bamboo. Bai Y; Wang W; Zhang Y; Wang X; Wang X; Shi J Polymers (Basel); 2022 Dec; 14(24):. PubMed ID: 36559831 [TBL] [Abstract][Full Text] [Related]
44. Characterisation of cellulose films regenerated from acetone/water coagulants. Geng H; Yuan Z; Fan Q; Dai X; Zhao Y; Wang Z; Qin M Carbohydr Polym; 2014 Feb; 102():438-44. PubMed ID: 24507303 [TBL] [Abstract][Full Text] [Related]
45. Increasing efficiency of enzymatic hemicellulose removal from bamboo for production of high-grade dissolving pulp. Zhao L; Yuan Z; Kapu NS; Chang XF; Beatson R; Trajano HL; Martinez DM Bioresour Technol; 2017 Jan; 223():40-46. PubMed ID: 27788428 [TBL] [Abstract][Full Text] [Related]
46. Cellulose hydrogels prepared from micron-sized bamboo cellulose fibers. Zhang X; Wang Y; Lu C; Zhang W Carbohydr Polym; 2014 Dec; 114():166-169. PubMed ID: 25263877 [TBL] [Abstract][Full Text] [Related]
47. Effects of Raw Material Source on the Properties of CMC Composite Films. Yao Y; Sun Z; Li X; Tang Z; Li X; Morrell JJ; Liu Y; Li C; Luo Z Polymers (Basel); 2021 Dec; 14(1):. PubMed ID: 35012053 [TBL] [Abstract][Full Text] [Related]
48. Applications of enzymatic technologies to the production of high-quality dissolving pulp: A review. Yang S; Yang B; Duan C; Fuller DA; Wang X; Chowdhury SP; Stavik J; Zhang H; Ni Y Bioresour Technol; 2019 Jun; 281():440-448. PubMed ID: 30876797 [TBL] [Abstract][Full Text] [Related]
49. Bamboo (Neosinocalamus affinis)-based thin film, a novel biomass material with high performances. Song F; Xu C; Bao WY; Wang XL; Wang YZ Carbohydr Polym; 2015 Mar; 119():167-72. PubMed ID: 25563957 [TBL] [Abstract][Full Text] [Related]
50. Potential of hot water extraction of birch wood to produce high-purity dissolving pulp after alkaline pulping. Borrega M; Tolonen LK; Bardot F; Testova L; Sixta H Bioresour Technol; 2013 May; 135():665-71. PubMed ID: 23260272 [TBL] [Abstract][Full Text] [Related]
51. Novel regenerated cellulose films prepared by coagulating with water: Structure and properties. Li R; Zhang L; Xu M Carbohydr Polym; 2012 Jan; 87(1):95-100. PubMed ID: 34663061 [TBL] [Abstract][Full Text] [Related]
52. Properties of cellulose/Thespesia lampas short fibers bio-composite films. Ashok B; Reddy KO; Madhukar K; Cai J; Zhang L; Rajulu AV Carbohydr Polym; 2015; 127():110-5. PubMed ID: 25965463 [TBL] [Abstract][Full Text] [Related]
53. Effect of hydrothermal pretreatment on solubility and formation of kenaf cellulose membrane and hydrogel. Gan S; Zakaria S; Chia CH; Padzil FN; Ng P Carbohydr Polym; 2015 Jan; 115():62-8. PubMed ID: 25439869 [TBL] [Abstract][Full Text] [Related]
54. Highly porous regenerated cellulose hydrogel and aerogel prepared from hydrothermal synthesized cellulose carbamate. Gan S; Zakaria S; Chia CH; Chen RS; Ellis AV; Kaco H PLoS One; 2017; 12(3):e0173743. PubMed ID: 28296977 [TBL] [Abstract][Full Text] [Related]
55. TEMPO-Oxidized Cellulose with High Degree of Oxidation. Tang Z; Li W; Lin X; Xiao H; Miao Q; Huang L; Chen L; Wu H Polymers (Basel); 2017 Sep; 9(9):. PubMed ID: 30965725 [TBL] [Abstract][Full Text] [Related]
56. Preparation of transparent anti-pollution cellulose carbamate regenerated cellulose membrane with high separation ability. Zhang S; Yu C; Liu N; Teng Y; Yin C Int J Biol Macromol; 2019 Oct; 139():332-341. PubMed ID: 31351962 [TBL] [Abstract][Full Text] [Related]
57. Cellulose dissolution and regeneration behavior via DBU-levulinic acid solvents. Ci Y; Chen T; Li F; Zou X; Tang Y Int J Biol Macromol; 2023 Dec; 252():126548. PubMed ID: 37648138 [TBL] [Abstract][Full Text] [Related]
58. The mechanism of solid acid-catalyzed bamboo sawdust liquefaction under polyol systems. Wu B; Tang H; Huang Y; Zhao M; Liang L; Xie Z; Wei L; Fang G; Wu T Front Bioeng Biotechnol; 2024; 12():1372155. PubMed ID: 38572362 [TBL] [Abstract][Full Text] [Related]
59. Structure and Physical Properties of Conductive Bamboo Fiber Bundle Fabricated by Magnetron Sputtering. Wang W; Li J; Shi J; Jiao Y; Wang X; Xia C Materials (Basel); 2023 Apr; 16(8):. PubMed ID: 37109990 [TBL] [Abstract][Full Text] [Related]
60. Direct Preparation of Cellulose Nanofibers from Bamboo by Nitric Acid and Hydrogen Peroxide Enables Fibrillation via a Cooperative Mechanism. Wang J; Li X; Song J; Wu K; Xue Y; Wu Y; Wang S Nanomaterials (Basel); 2020 May; 10(5):. PubMed ID: 32429055 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]