BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 36987291)

  • 1. Strategies for Developing Shape-Shifting Behaviours and Potential Applications of Poly (N-vinyl Caprolactam) Hydrogels.
    Zhuo S; Shu Hieng Tie B; Keane G; Geever LM
    Polymers (Basel); 2023 Mar; 15(6):. PubMed ID: 36987291
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of NVCL-NIPAM Hydrogels Using PEGDMA as a Chemical Crosslinker for Controlled Swelling Behaviours in Potential Shapeshifting Applications.
    Tie BSH; Halligan E; Zhuo S; Keane G; Geever L
    Gels; 2023 Mar; 9(3):. PubMed ID: 36975697
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lower Critical Solution Temperature Tuning and Swelling Behaviours of NVCL-Based Hydrogels for Potential 4D Printing Applications.
    Zhuo S; Halligan E; Tie BSH; Breheny C; Geever LM
    Polymers (Basel); 2022 Aug; 14(15):. PubMed ID: 35956668
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Development of New Material for 4D Printing and the Material Properties Comparison between the Conventional and Stereolithography Polymerised NVCL Hydrogels.
    Zhuo S; Geever LM; Halligan E; Tie BSH; Breheny C
    J Funct Biomater; 2022 Nov; 13(4):. PubMed ID: 36547522
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reversible Shape-Shifting of an Ionic Strength Responsive Hydrogel Enabled by Programmable Network Anisotropy.
    Wen X; Zhang Y; Chen D; Zhao Q
    ACS Appl Mater Interfaces; 2022 Sep; 14(35):40344-40350. PubMed ID: 36017981
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Smart composite hydrogel with pH-, ionic strength- and temperature-induced actuation.
    Shang J; Theato P
    Soft Matter; 2018 Nov; 14(41):8401-8407. PubMed ID: 30311935
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Water-Responsive Shape Recovery Induced Buckling in Biodegradable Photo-Cross-Linked Poly(ethylene glycol) (PEG) Hydrogel.
    Salvekar AV; Huang WM; Xiao R; Wong YS; Venkatraman SS; Tay KH; Shen ZX
    Acc Chem Res; 2017 Feb; 50(2):141-150. PubMed ID: 28181795
    [TBL] [Abstract][Full Text] [Related]  

  • 8. One-Pot and One-Step Fabrication of Salt-Responsive Bilayer Hydrogels with 2D and 3D Shape Transformations.
    He X; Zhang D; Wu J; Wang Y; Chen F; Fan P; Zhong M; Xiao S; Yang J
    ACS Appl Mater Interfaces; 2019 Jul; 11(28):25417-25426. PubMed ID: 31140780
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Programmable Morphing Hydrogels for Soft Actuators and Robots: From Structure Designs to Active Functions.
    Jiao D; Zhu QL; Li CY; Zheng Q; Wu ZL
    Acc Chem Res; 2022 Jun; 55(11):1533-1545. PubMed ID: 35413187
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controlled shape deformation of bilayer films with tough adhesion between nanocomposite hydrogels and polymer substrates.
    Li Y; Yang J; Yu X; Sun X; Chen F; Tang Z; Zhu L; Qin G; Chen Q
    J Mater Chem B; 2018 Nov; 6(41):6629-6636. PubMed ID: 32254871
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stimuli-Responsive DNA-Based Hydrogels: From Basic Principles to Applications.
    Kahn JS; Hu Y; Willner I
    Acc Chem Res; 2017 Apr; 50(4):680-690. PubMed ID: 28248486
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chitosan microparticles embedded with multi-responsive poly(N-vinylcaprolactam-co-itaconic acid-co-ethylene-glycol dimethacrylate)-based hydrogel nanoparticles as a new carrier for delivery of hydrophobic drugs.
    Matos Fonseca J; Fátima Medeiros S; Alves GM; Santos DMD; Campana-Filho SP; Santos AMD
    Colloids Surf B Biointerfaces; 2019 Mar; 175():73-83. PubMed ID: 30522010
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A programmable bilayer hydrogel actuator based on the asymmetric distribution of crystalline regions.
    Li X; Cheng Y; Zhang J; Hou Y; Xu X; Liu Q
    J Mater Chem B; 2021 Dec; 10(1):120-130. PubMed ID: 34889938
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Salt-Responsive Bilayer Hydrogels with Pseudo-Double-Network Structure Actuated by Polyelectrolyte and Antipolyelectrolyte Effects.
    Xiao S; Yang Y; Zhong M; Chen H; Zhang Y; Yang J; Zheng J
    ACS Appl Mater Interfaces; 2017 Jun; 9(24):20843-20851. PubMed ID: 28570039
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrophilic/Hydrophobic Composite Shape-Shifting Structures.
    Zhao Z; Kuang X; Yuan C; Qi HJ; Fang D
    ACS Appl Mater Interfaces; 2018 Jun; 10(23):19932-19939. PubMed ID: 29737169
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel Biocompatible Thermoresponsive Poly(N-vinyl Caprolactam)/Clay Nanocomposite Hydrogels with Macroporous Structure and Improved Mechanical Characteristics.
    Shi K; Liu Z; Yang C; Li XY; Sun YM; Deng Y; Wang W; Ju XJ; Xie R; Chu LY
    ACS Appl Mater Interfaces; 2017 Jul; 9(26):21979-21990. PubMed ID: 28603958
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cellulose-based polymeric emulsifier stabilized poly(N-vinylcaprolactam) hydrogel with temperature and pH responsiveness.
    Yang X; Li Z; Liu H; Ma L; Huang X; Cai Z; Xu X; Shang S; Song Z
    Int J Biol Macromol; 2020 Jan; 143():190-199. PubMed ID: 31825801
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Smart Bilayer Polyacrylamide/DNA Hybrid Hydrogel Film Actuators Exhibiting Programmable Responsive and Reversible Macroscopic Shape Deformations.
    Bi Y; Du X; He P; Wang C; Liu C; Guo W
    Small; 2020 Oct; 16(42):e1906998. PubMed ID: 32985098
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shape-Memory Hydrogels: Evolution of Structural Principles To Enable Shape Switching of Hydrophilic Polymer Networks.
    Löwenberg C; Balk M; Wischke C; Behl M; Lendlein A
    Acc Chem Res; 2017 Apr; 50(4):723-732. PubMed ID: 28199083
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acousto-Photolithography for Programmable Shape Deformation of Composite Hydrogel Sheets.
    Li M; Mei J; Friend J; Bae J
    Small; 2022 Nov; 18(47):e2204288. PubMed ID: 36216774
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.