These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 36987329)

  • 1. The Effects of Particle Size Distribution and Moisture Variation on Mechanical Strength of Biopolymer-Treated Soil.
    Fatehi H; Ong DEL; Yu J; Chang I
    Polymers (Basel); 2023 Mar; 15(6):. PubMed ID: 36987329
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Durability against Wetting-Drying Cycles of Sustainable Biopolymer-Treated Soil.
    Soldo A; Miletic M
    Polymers (Basel); 2022 Oct; 14(19):. PubMed ID: 36236194
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Durability, Strength, and Erosion Resistance Assessment of Lignin Biopolymer Treated Soil.
    Bagheri P; Gratchev I; Son S; Rybachuk M
    Polymers (Basel); 2023 Mar; 15(6):. PubMed ID: 36987336
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Durability and strength degradation of xanthan gum based biopolymer treated soil subjected to severe weathering cycles.
    Lee M; Kwon YM; Park DY; Chang I; Cho GC
    Sci Rep; 2022 Nov; 12(1):19453. PubMed ID: 36376480
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Varying Curing Conditions on the Strength of Biopolymer Modified Sand.
    Lemboye K; Almajed A
    Polymers (Basel); 2023 Mar; 15(7):. PubMed ID: 37050291
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Review on Soils Treated with Biopolymers Based on Unsaturated Soil Theory.
    Zhang J; Liu J
    Polymers (Basel); 2023 Nov; 15(22):. PubMed ID: 38006154
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of biopolymer-vegetation interaction on soil hydro-mechanical properties under climate change: A review.
    Liu Y; Ni J; Gu J; Liu S; Huang Y; Sadeghi H
    Sci Total Environ; 2024 Sep; 954():176535. PubMed ID: 39332716
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring Environmentally Friendly Biopolymer Material Effect on Soil Tensile and Compressive Behavior.
    Chen C; Peng Z; Gu J; Peng Y; Huang X; Wu L
    Int J Environ Res Public Health; 2020 Dec; 17(23):. PubMed ID: 33287424
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sustainable biopolymer soil stabilisation: the effect of microscale chemical characteristics on macroscale mechanical properties.
    Armistead SJ; Smith CC; Staniland SS
    Acta Geotech; 2023; 18(6):3213-3227. PubMed ID: 37324171
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of Changes to Triaxial Shear Strength Parameters and Microstructure of Yili Loess with Drying-Wetting Cycles.
    Hao R; Zhang Z; Guo Z; Huang X; Lv Q; Wang J; Liu T
    Materials (Basel); 2021 Dec; 15(1):. PubMed ID: 35009401
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biopolymers as a sustainable solution for the enhancement of soil mechanical properties.
    Soldo A; Miletić M; Auad ML
    Sci Rep; 2020 Jan; 10(1):267. PubMed ID: 31937816
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cracking and erosion behaviors of sand-clay mixtures stabilized with microbial biopolymer and palm fiber.
    Liu J; Wang Z; Hu G; Xue J; Bu F; Jing M; Song Z; Che W
    Sci Total Environ; 2023 Dec; 905():166991. PubMed ID: 37709079
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wetting/Drying Behavior of Lime and Alkaline Activation Stabilized Marine Clay Reinforced with Modified Coir Fiber.
    Kamaruddin FA; Anggraini V; Kim Huat B; Nahazanan H
    Materials (Basel); 2020 Jun; 13(12):. PubMed ID: 32560432
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bacterial Alginate-Based Hydrogel Reduces Hydro-Mechanical Soil-Related Problems in Agriculture Facing Climate Change.
    Barrientos-Sanhueza C; Cargnino-Cisternas D; Díaz-Barrera A; Cuneo IF
    Polymers (Basel); 2022 Feb; 14(5):. PubMed ID: 35267745
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combined Effect of Biopolymer and Fiber Inclusions on Unconfined Compressive Strength of Soft Soil.
    Chen C; Wei K; Gu J; Huang X; Dai X; Liu Q
    Polymers (Basel); 2022 Feb; 14(4):. PubMed ID: 35215698
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Drying-wetting cycles consistently increase net nitrogen mineralization in 25 agricultural soils across intensity and number of drying-wetting cycles.
    Lu T; Wang Y; Zhu H; Wei X; Shao M
    Sci Total Environ; 2020 Mar; 710():135574. PubMed ID: 31787285
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of Chitosan on Water Stability and Wettability of Soils.
    Adamczuk A; Kercheva M; Hristova M; Jozefaciuk G
    Materials (Basel); 2021 Dec; 14(24):. PubMed ID: 34947320
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Macroscopic Stress-Strain Response and Strain-Localization Behavior of Biopolymer-Treated Soil.
    Soldo A; Aguilar V; Miletić M
    Polymers (Basel); 2022 Feb; 14(5):. PubMed ID: 35267820
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Freeze-Dried β-Glucan and Poly-γ-glutamic Acid: An Efficient Stabilizer to Strengthen Subgrades of Low Compressible Fine-Grained Soils with Varying Curing Periods.
    Vishweshwaran M; Sujatha ER; Baldovino JA
    Polymers (Basel); 2024 Jun; 16(11):. PubMed ID: 38891532
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improvement of Geotechnical Properties of Clayey Soil Using Biopolymer and Ferrochromium Slag Additives.
    Çetin MY; Bağrıaçık B; Annagür HM; Topoliński S
    Polymers (Basel); 2024 May; 16(10):. PubMed ID: 38794499
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.