These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 36987337)

  • 1. Assessment and Optimization of Thermal Stability and Water Absorption of Loading Snail Shell Nanoparticles and Sugarcane Bagasse Cellulose Fibers on Polylactic Acid Bioplastic Films.
    Gbadeyan OJ; Linganiso LZ; Deenadayalu N
    Polymers (Basel); 2023 Mar; 15(6):. PubMed ID: 36987337
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermomechanical characterization of bioplastic films produced using a combination of polylactic acid and bionano calcium carbonate.
    Gbadeyan OJ; Linganiso LZ; Deenadayalu N
    Sci Rep; 2022 Sep; 12(1):15538. PubMed ID: 36109572
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolation and characterization of micro and nanocrystalline cellulose fibers from the walnut shell, corncob and sugarcane bagasse.
    Harini K; Chandra Mohan C
    Int J Biol Macromol; 2020 Nov; 163():1375-1383. PubMed ID: 32750484
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of xylanase-assisted pretreatment on the properties of cellulose and regenerated cellulose films from sugarcane bagasse.
    Vanitjinda G; Nimchua T; Sukyai P
    Int J Biol Macromol; 2019 Feb; 122():503-516. PubMed ID: 30385339
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of cellulose nanocrystals from sugarcane bagasse on whey protein isolate-based films.
    Sukyai P; Anongjanya P; Bunyahwuthakul N; Kongsin K; Harnkarnsujarit N; Sukatta U; Sothornvit R; Chollakup R
    Food Res Int; 2018 May; 107():528-535. PubMed ID: 29580516
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative Reinforcement Effect of
    Gbadeyan OJ; Adali S; Bright G; Sithole B
    Polymers (Basel); 2022 Jan; 14(3):. PubMed ID: 35160355
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal and Barrier Characterizations of Cellulose Esters with Variable Side-Chain Lengths and Their Effect on PHBV and PLA Bioplastic Film Properties.
    Zhao X; Anwar I; Zhang X; Pellicciotti A; Storts S; Nagib DA; Vodovotz Y
    ACS Omega; 2021 Sep; 6(38):24700-24708. PubMed ID: 34604652
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development and characterisation of packaging film from Napier cellulose nanowhisker reinforced polylactic acid (PLA) bionanocomposites.
    Sucinda EF; Abdul Majid MS; Ridzuan MJM; Cheng EM; Alshahrani HA; Mamat N
    Int J Biol Macromol; 2021 Sep; 187():43-53. PubMed ID: 34271052
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Processing and properties of eco-friendly bio-nanocomposite films filled with cellulose nanocrystals from sugarcane bagasse.
    El Achaby M; El Miri N; Aboulkas A; Zahouily M; Bilal E; Barakat A; Solhy A
    Int J Biol Macromol; 2017 Mar; 96():340-352. PubMed ID: 27988293
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Properties and Characterization of Lignin Nanoparticles Functionalized in Macroalgae Biopolymer Films.
    Rizal S; Alfatah T; H P S AK; Mistar EM; Abdullah CK; Olaiya FG; Sabaruddin FA; Ikramullah ; Muksin U
    Nanomaterials (Basel); 2021 Mar; 11(3):. PubMed ID: 33806473
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pretreatment of Cellulose from Sugarcane Bagasse with Xylanase for Improving Dyeability with Natural Dyes.
    Senapitakkul V; Vanitjinda G; Torgbo S; Pinmanee P; Nimchua T; Rungthaworn P; Sukatta U; Sukyai P
    ACS Omega; 2020 Nov; 5(43):28168-28177. PubMed ID: 33163799
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cosmetic potential of lignin extracts from alkaline-treated sugarcane bagasse: Optimization of extraction conditions using response surface methodology.
    Ratanasumarn N; Chitprasert P
    Int J Biol Macromol; 2020 Jun; 153():138-145. PubMed ID: 32142851
    [TBL] [Abstract][Full Text] [Related]  

  • 13. From Cellulose Nanospheres, Nanorods to Nanofibers: Various Aspect Ratio Induced Nucleation/Reinforcing Effects on Polylactic Acid for Robust-Barrier Food Packaging.
    Yu HY; Zhang H; Song ML; Zhou Y; Yao J; Ni QQ
    ACS Appl Mater Interfaces; 2017 Dec; 9(50):43920-43938. PubMed ID: 29171751
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation and characterization of polylactic acid/polyaniline/nanocrystalline cellulose nanocomposite films.
    Wang X; Tang Y; Zhu X; Zhou Y; Hong X
    Int J Biol Macromol; 2020 Mar; 146():1069-1075. PubMed ID: 31739061
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bio-based antimicrobial packaging from sugarcane bagasse nanocellulose/nisin hybrid films.
    Yang Y; Liu H; Wu M; Ma J; Lu P
    Int J Biol Macromol; 2020 Oct; 161():627-635. PubMed ID: 32535206
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Esterification of sugarcane bagasse by citric acid for Pb
    Hoang MT; Pham TD; Pham TT; Nguyen MK; Nu DTT; Nguyen TH; Bartling S; Van der Bruggen B
    Environ Sci Pollut Res Int; 2021 Mar; 28(10):11869-11881. PubMed ID: 31953762
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization and Parametric Study on Mechanical Properties Enhancement in Biodegradable Chitosan-Reinforced Starch-Based Bioplastic Film.
    Tan SX; Ong HC; Andriyana A; Lim S; Pang YL; Kusumo F; Ngoh GC
    Polymers (Basel); 2022 Jan; 14(2):. PubMed ID: 35054685
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Environmental and technical feasibility of cellulose nanocrystal manufacturing from sugarcane bagasse.
    Leão RM; Miléo PC; Maia JMLL; Luz SM
    Carbohydr Polym; 2017 Nov; 175():518-529. PubMed ID: 28917896
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrospun Ultrafine Cationic Cellulose Fibers Produced from Sugarcane Bagasse for Potential Textile Applications.
    Ochica Larrota AF; Vera-Graziano R; López-Córdoba A; Gómez-Pachón EY
    Polymers (Basel); 2021 Nov; 13(22):. PubMed ID: 34833226
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low-cost sugarcane bagasse and peanut shell magnetic-composites applied in the removal of carbofuran and iprodione pesticides.
    Toledo-Jaldin HP; Sánchez-Mendieta V; Blanco-Flores A; López-Téllez G; Vilchis-Nestor AR; Martín-Hernández O
    Environ Sci Pollut Res Int; 2020 Mar; 27(8):7872-7885. PubMed ID: 31889281
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.