These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 36987360)
1. Mechanism of the Impact-Sensitivity Reduction of Energetic CL-20/TNT Cocrystals: A Nonequilibrium Molecular Dynamics Study. Wang F; Du G; Zhang C; Wang QY Polymers (Basel); 2023 Mar; 15(6):. PubMed ID: 36987360 [TBL] [Abstract][Full Text] [Related]
2. Theoretical investigations on structures, stability, energetic performance, sensitivity, and mechanical properties of CL-20/TNT/HMX cocrystal explosives by molecular dynamics simulation. Hang GY; Yu WL; Wang T; Wang JT J Mol Model; 2019 Jan; 25(1):10. PubMed ID: 30603804 [TBL] [Abstract][Full Text] [Related]
3. Comparative studies on structures, mechanical properties, sensitivity, stabilities and detonation performance of CL-20/TNT cocrystal and composite explosives by molecular dynamics simulation. Hang GY; Yu WL; Wang T; Wang JT; Li Z J Mol Model; 2017 Sep; 23(10):281. PubMed ID: 28929235 [TBL] [Abstract][Full Text] [Related]
4. Chemical Insight on Decreased Sensitivity of CL-20/TNT Cocrystal Revealed by ReaxFF MD Simulations. Ren C; Li X; Guo L J Chem Inf Model; 2019 May; 59(5):2079-2092. PubMed ID: 30768269 [TBL] [Abstract][Full Text] [Related]
5. High-density HNIW/TNT cocrystal synthesized using a green chemical method. Liu Y; An C; Luo J; Wang J Acta Crystallogr B Struct Sci Cryst Eng Mater; 2018 Aug; 74(Pt 4):385-393. PubMed ID: 30141424 [TBL] [Abstract][Full Text] [Related]
6. Low-temperature dependence on the THz spectrum of CL-20/TNT energetic cocrystal by molecular dynamics simulations. Shi L; Duan XH; Zhu LG; Pei CH J Mol Model; 2020 Jan; 26(2):25. PubMed ID: 31927630 [TBL] [Abstract][Full Text] [Related]
7. Preparation and Molecular Dynamic Simulation of Superfine CL-20/TNT Cocrystal Based on the Opposite Spray Method. Yuan J; Liu Z; Han T; Li J; Han P; Wang J Int J Mol Sci; 2024 Aug; 25(17):. PubMed ID: 39273448 [TBL] [Abstract][Full Text] [Related]
8. Preparation and Characterization of Nano-CL-20/TNT Cocrystal Explosives by Mechanical Ball-Milling Method. Hu Y; Yuan S; Li X; Liu M; Sun F; Yang Y; Hao G; Jiang W ACS Omega; 2020 Jul; 5(28):17761-17766. PubMed ID: 32724868 [TBL] [Abstract][Full Text] [Related]
9. Temperature-dependent decomposition of the CL-20/MTNP cocrystal after phase separation. Yang F; Yang Z; Yu Q; Liu Z; Li G; Zhao C; Tian Y Phys Chem Chem Phys; 2024 Mar; 26(10):8547-8558. PubMed ID: 38412456 [TBL] [Abstract][Full Text] [Related]
10. Decomposition mechanism scenarios of CL-20 co-crystals revealed by ReaxFF molecular dynamics: similarities and differences. Ren C; Liu H; Li X; Guo L Phys Chem Chem Phys; 2020 Feb; 22(5):2827-2840. PubMed ID: 31965130 [TBL] [Abstract][Full Text] [Related]
11. The role of electric field on decomposition of CL-20/HMX cocrystal: A reactive molecular dynamics study. Zhang J; Guo W J Comput Chem; 2021 Dec; 42(31):2202-2212. PubMed ID: 34476813 [TBL] [Abstract][Full Text] [Related]
12. "Thermal escape" of MTNP: the phase separation of CL-20/MTNP cocrystals under long-term heating. Yang F; Yang Z; Yu Q; Li G; Zhao C; Tian Y Phys Chem Chem Phys; 2023 Mar; 25(9):6838-6846. PubMed ID: 36794494 [TBL] [Abstract][Full Text] [Related]
13. Design, preparation, characterization and formation mechanism of a novel kinetic CL-20-based cocrystal. Sun S; Zhang H; Xu J; Wang H; Wang S; Yu Z; Zhu C; Sun J Acta Crystallogr B Struct Sci Cryst Eng Mater; 2019 Jun; 75(Pt 3):310-317. PubMed ID: 32830652 [TBL] [Abstract][Full Text] [Related]
14. Isothermal structural evolution of CL-20/HMX cocrystals under slow roasting at 190 °C. Liang W; Sun X; Wang H; Wang J; Sui Z; Ren H; Dai R; Zheng X; Wang Z; Duan X; Zhang Z Phys Chem Chem Phys; 2023 Jun; 25(23):15756-15766. PubMed ID: 37254560 [TBL] [Abstract][Full Text] [Related]
15. Theoretical investigations on the structures and properties of CL-20/TNT cocrystal and its defective models by molecular dynamics simulation. Hang GY; Yu WL; Wang T; Wang JT J Mol Model; 2018 Jun; 24(7):158. PubMed ID: 29886509 [TBL] [Abstract][Full Text] [Related]
16. Anisotropic response of the co-crystal of CL-20/TNT under shock loading: molecular dynamics simulation. Li Y; Yu WL; Huang H; Zhu M; Wang JT RSC Adv; 2021 Nov; 11(61):38383-38390. PubMed ID: 35493208 [TBL] [Abstract][Full Text] [Related]
17. Reactive molecular dynamics simulation of thermal decomposition for nano-aluminized explosives. Mei Z; An Q; Zhao FQ; Xu SY; Ju XH Phys Chem Chem Phys; 2018 Nov; 20(46):29341-29350. PubMed ID: 30444501 [TBL] [Abstract][Full Text] [Related]
18. CL-20/TNT decomposition under shock: cocrystalline Li Y; Yu WL; Huang H RSC Adv; 2022 Feb; 12(11):6938-6946. PubMed ID: 35424606 [TBL] [Abstract][Full Text] [Related]
19. Theoretical investigations on stability, sensitivity, energetic performance, and mechanical properties of CL-20/TNAD cocrystal explosive by molecular dynamics method. Hang GY; Wang JT; Wang T; Shen HM; Yu WL; Shen RQ J Mol Model; 2022 Feb; 28(3):58. PubMed ID: 35150322 [TBL] [Abstract][Full Text] [Related]
20. Theoretical insight into the binding energy and detonation performance of ε-, γ-, β-CL-20 cocrystals with β-HMX, FOX-7, and DMF in different molar ratios, as well as electrostatic potential. Feng RZ; Zhang SH; Ren FD; Gou RJ; Gao L J Mol Model; 2016 Jun; 22(6):123. PubMed ID: 27168198 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]