These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 36987360)
21. Intermolecular Vibration Energy Transfer Process in Two CL-20-Based Cocrystals Theoretically Revealed by Two-Dimensional Infrared Spectra. Ren HC; Ji LX; Chen TN; Jia XZ; Liu RP; Zhang XQ; Wei DQ; Wang XF; Ji GF Molecules; 2022 Mar; 27(7):. PubMed ID: 35408551 [TBL] [Abstract][Full Text] [Related]
22. CL-20-Based Cocrystal Energetic Materials: Simulation, Preparation and Performance. Pang WQ; Wang K; Zhang W; Luca LT; Fan XZ; Li JQ Molecules; 2020 Sep; 25(18):. PubMed ID: 32962224 [TBL] [Abstract][Full Text] [Related]
23. Easy methods to study the smart energetic TNT/CL-20 co-crystal. Li H; Shu Y; Gao S; Chen L; Ma Q; Ju X J Mol Model; 2013 Nov; 19(11):4909-17. PubMed ID: 24043545 [TBL] [Abstract][Full Text] [Related]
24. Towards the low-sensitive and high-energetic co-crystal explosive CL-20/TNT: from intermolecular interactions to structures and properties. Zhang XQ; Yuan JN; Selvaraj G; Ji GF; Chen XR; Wei DQ Phys Chem Chem Phys; 2018 Jun; 20(25):17253-17261. PubMed ID: 29901061 [TBL] [Abstract][Full Text] [Related]
25. Directly Insight Into the Inter- and Intramolecular Interactions of CL-20/TNT Energetic Cocrystal through the Theoretical Simulations of THz Spectroscopy. Shi L; Duan XH; Zhu LG; Liu X; Pei CH J Phys Chem A; 2016 Mar; 120(8):1160-7. PubMed ID: 26844376 [TBL] [Abstract][Full Text] [Related]
26. Improving the surface hydrophobicity by the solvent effect to reduce the water erosion of the CL-20/TNT cocrystal explosive. Sha Y; Zhang X Phys Chem Chem Phys; 2021 Oct; 23(40):23341-23350. PubMed ID: 34635888 [TBL] [Abstract][Full Text] [Related]
27. The thermal decomposition process of Composition B by ReaxFF/lg force field. Meng J; Zhang S; Gou R; Chen Y; Li Y; Chen M; Li Z J Mol Model; 2020 Aug; 26(9):245. PubMed ID: 32820387 [TBL] [Abstract][Full Text] [Related]
28. Structural evolution of CL-20/DNB cocrystals at high temperature: Phase transition and kinetics of thermal decomposition. Sun X; Liang W; Li X; Mai D; Zhang Y; Sui Z; Dai R; Zheng X; Wang Z; Duan X; Zhang Z Spectrochim Acta A Mol Biomol Spectrosc; 2023 May; 292():122436. PubMed ID: 36753867 [TBL] [Abstract][Full Text] [Related]
30. Designing and property prediction of a novel three-component CL-20/HMX/TNAD energetic cocrystal explosive by MD method. Hang GY; Wang T; Lu C; Wang JT; Yu WL; Shen HM J Mol Model; 2023 Feb; 29(3):78. PubMed ID: 36847881 [TBL] [Abstract][Full Text] [Related]
31. Search for stable cocrystals of energetic materials using the evolutionary algorithm USPEX. Pakhnova M; Kruglov I; Yanilkin A; Oganov AR Phys Chem Chem Phys; 2020 Aug; 22(29):16822-16830. PubMed ID: 32662490 [TBL] [Abstract][Full Text] [Related]
32. Theoretical research on performances of CL-20/HMX cocrystal explosive and its based polymer bonded explosives (PBXs) by molecular dynamics method. Hang GY; Wang T; Wang JT; Yu WL; Shen HM J Mol Model; 2022 Nov; 28(12):385. PubMed ID: 36376600 [TBL] [Abstract][Full Text] [Related]
33. A Study of the Shock Sensitivity of Energetic Single Crystals by Large-Scale Ab Initio Molecular Dynamics Simulations. Zhang L; Yu Y; Xiang M Nanomaterials (Basel); 2019 Sep; 9(9):. PubMed ID: 31484358 [TBL] [Abstract][Full Text] [Related]
34. Study on the effect of solvent on cocrystallization of CL-20 and HMX through theoretical calculations and experiments. Zhao X; Li J; Quan S; Fu X; Meng S; Jiang L; Fan X RSC Adv; 2022 Jul; 12(33):21255-21263. PubMed ID: 35975069 [TBL] [Abstract][Full Text] [Related]
35. Thermal Decomposition Mechanism of CL-20 at Different Temperatures by ReaxFF Reactive Molecular Dynamics Simulations. Wang F; Chen L; Geng D; Wu J; Lu J; Wang C J Phys Chem A; 2018 Apr; 122(16):3971-3979. PubMed ID: 29620895 [TBL] [Abstract][Full Text] [Related]
36. Roles of Small Molecules in the Stability and Sensitivity of CL-20-Based Host-Guest Explosives under Electric Fields: A Reactive Molecular Dynamics Study. Zhang J; Guo W J Phys Chem A; 2022 Jan; 126(2):286-295. PubMed ID: 34985266 [TBL] [Abstract][Full Text] [Related]
37. Effects of Different Guests on Pyrolysis Mechanism of α-CL-20/Guest at High Temperatures by Reactive Molecular Dynamics Simulations at High Temperatures. Zhou M; Luo J; Xiang D Int J Mol Sci; 2023 Jan; 24(3):. PubMed ID: 36768165 [TBL] [Abstract][Full Text] [Related]
38. Molecular Dynamics Simulations for Effects of Fluoropolymer Binder Content in CL-20/TNT Based Polymer-Bonded Explosives. Li S; Xiao J Molecules; 2021 Aug; 26(16):. PubMed ID: 34443464 [TBL] [Abstract][Full Text] [Related]
39. Effect of solvent mixture on the formation of CL-20/HMX cocrystal explosives. Liu Y; Gou RJ; Zhang SH; Chen YH; Chen MH; Liu YB J Mol Model; 2019 Dec; 26(1):8. PubMed ID: 31834533 [TBL] [Abstract][Full Text] [Related]
40. Effect of density on the thermal decomposition mechanism of ε-CL-20: a ReaxFF reactive molecular dynamics simulation study. Wang F; Chen L; Geng D; Lu J; Wu J Phys Chem Chem Phys; 2018 Sep; 20(35):22600-22609. PubMed ID: 30116820 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]