These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 36987366)

  • 1. Silver Nanoparticles as Antifungal Agents in Acrylic Latexes: Influence of the Initiator Type on Nanoparticle Incorporation and
    Boivin G; Ritcey AM; Landry V
    Polymers (Basel); 2023 Mar; 15(6):. PubMed ID: 36987366
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation of novel film-forming armoured latexes using silica nanoparticles as a pickering emulsion stabiliser.
    Shiraz H; Peake SJ; Davey T; Cameron NR; Tabor RF
    J Colloid Interface Sci; 2018 Oct; 528():289-300. PubMed ID: 29859454
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of initiators in preparing magnetic polymer particles by miniemulsion polymerization.
    Mori Y; Kawaguchi H
    Colloids Surf B Biointerfaces; 2007 Apr; 56(1-2):246-54. PubMed ID: 17196799
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation of highly monodisperse fluorescent polymer particles by miniemulsion polymerization of styrene with a polymerizable surfactant.
    Taniguchi T; Takeuchi N; Kobaru S; Nakahira T
    J Colloid Interface Sci; 2008 Nov; 327(1):58-62. PubMed ID: 18755470
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On inverse miniemulsion polymerization of conventional water-soluble monomers.
    Capek I
    Adv Colloid Interface Sci; 2010 Apr; 156(1-2):35-61. PubMed ID: 20199767
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis and characterization of novel polyacid-stabilized latexes.
    Yang P; Armes SP
    Langmuir; 2012 Sep; 28(37):13189-200. PubMed ID: 22891891
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antimicrobial dispersions and films from positively charged styrene and acrylic copolymers.
    Wojciechowski K; Kaczorowski M; Mierzejewska J; Parzuchowski P
    Colloids Surf B Biointerfaces; 2018 Dec; 172():532-540. PubMed ID: 30216903
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Comparative Study on the Adsorption of Triton X-100 and Tween 20 onto Latexes with Different Interfacial Properties.
    Martín-Rodríguez A; Cabrerizo-Vílchez MA; Hidalgo-Álvarez R
    J Colloid Interface Sci; 1997 Mar; 187(1):139-47. PubMed ID: 9245323
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antifungal property of acrylic denture soft liner containing silver nanoparticles synthesized in situ.
    Deng J; Ren L; Pan Y; Gao H; Meng X
    J Dent; 2021 Mar; 106():103589. PubMed ID: 33524431
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of Candida albicans adhesion and biofilm formation on a denture base acrylic resin containing silver nanoparticles.
    Wady AF; Machado AL; Zucolotto V; Zamperini CA; Berni E; Vergani CE
    J Appl Microbiol; 2012 Jun; 112(6):1163-72. PubMed ID: 22452416
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New hybrid latexes from a soybean oil-based waterborne polyurethane and acrylics via emulsion polymerization.
    Lu Y; Larock RC
    Biomacromolecules; 2007 Oct; 8(10):3108-14. PubMed ID: 17877401
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polymer latexes for cell-resistant and cell-interactive surfaces.
    Banerjee P; Irvine DJ; Mayes AM; Griffith LG
    J Biomed Mater Res; 2000 Jun; 50(3):331-9. PubMed ID: 10737874
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and application of hybrid polymer composites based on silver nanoparticles as corrosion protection for line pipe steel.
    Atta AM; El-Mahdy GA; Al-Lohedan HA; Ezzat AO
    Molecules; 2014 May; 19(5):6246-62. PubMed ID: 24840897
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative study of antifungal activity of two preparations of green silver nanoparticles from
    Al-Otibi F; Alfuzan SA; Alharbi RI; Al-Askar AA; Al-Otaibi RM; Al Subaie HF; Moubayed NMS
    Saudi J Biol Sci; 2022 Apr; 29(4):2772-2781. PubMed ID: 35531187
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface properties-dependent antifungal activity of silver nanoparticles.
    Matras E; Gorczyca A; Przemieniecki SW; Oćwieja M
    Sci Rep; 2022 Oct; 12(1):18046. PubMed ID: 36302952
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Compressed Hydrogen-Induced Synthesis of Quaternary Trimethyl Chitosan-Silver Nanoparticles with Dual Antibacterial and Antifungal Activities.
    Alli YA; Ejeromedoghene O; Oladipo A; Adewuyi S; Amolegbe SA; Anuar H; Thomas S
    ACS Appl Bio Mater; 2022 Nov; 5(11):5240-5254. PubMed ID: 36270024
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization of silver nanoparticle biosynthesis by entomopathogenic fungi and assays of their antimicrobial and antifungal properties.
    Soleimani P; Mehrvar A; Michaud JP; Vaez N
    J Invertebr Pathol; 2022 May; 190():107749. PubMed ID: 35283206
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation of cellulose-based wipes treated with antimicrobial and antiviral silver nanoparticles as novel effective high-performance coronavirus fighter.
    Hamouda T; Ibrahim HM; Kafafy HH; Mashaly HM; Mohamed NH; Aly NM
    Int J Biol Macromol; 2021 Jun; 181():990-1002. PubMed ID: 33864870
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effective treatment of resistant opportunistic fungi associated with immuno-compromised individuals using silver biosynthesized nanoparticles.
    Almansob A; Bahkali AH; Albarrag A; Alshomrani M; Binjomah A; Hailan WA; Ameen F
    Appl Nanosci; 2022; 12(12):3871-3882. PubMed ID: 35909460
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessing the Effect of CeO
    González E; Stuhr R; Vega JM; García-Lecina E; Grande HJ; Leiza JR; Paulis M
    Polymers (Basel); 2021 Mar; 13(6):. PubMed ID: 33801930
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.