These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
213 related articles for article (PubMed ID: 36987521)
1. Construction and validation of a multi-epitope in silico vaccine model for lymphatic filariasis by targeting Madanagopal P; Muthusamy S; Pradhan SN; Prince PR Bull Natl Res Cent; 2023; 47(1):47. PubMed ID: 36987521 [TBL] [Abstract][Full Text] [Related]
2. Immune targeting of filarial glutaredoxin through a multi-epitope peptide-based vaccine: A reverse vaccinology approach. Das NC; Gorai S; Gupta PSS; Panda SK; Rana MK; Mukherjee S Int Immunopharmacol; 2024 May; 133():112120. PubMed ID: 38657497 [TBL] [Abstract][Full Text] [Related]
3. An integrated multi-pronged reverse vaccinology and biophysical approaches for identification of potential vaccine candidates against Nipah virus. Albutti A Saudi Pharm J; 2023 Dec; 31(12):101826. PubMed ID: 38028215 [TBL] [Abstract][Full Text] [Related]
4. Designing of a novel multi-epitope peptide based vaccine against Brugia malayi: An in silico approach. Das NC; Patra R; Gupta PSS; Ghosh P; Bhattacharya M; Rana MK; Mukherjee S Infect Genet Evol; 2021 Jan; 87():104633. PubMed ID: 33181335 [TBL] [Abstract][Full Text] [Related]
5. Reverse vaccinology assisted design of a novel multi-epitope vaccine to target Wuchereria bancrofti cystatin: An immunoinformatics approach. Das NC; Gupta PSS; Panda SK; Rana MK; Mukherjee S Int Immunopharmacol; 2023 Feb; 115():109639. PubMed ID: 36586276 [TBL] [Abstract][Full Text] [Related]
7. Mining of Ebola virus genome for the construction of multi-epitope vaccine to combat its infection. Shankar U; Jain N; Mishra SK; Sk MF; Kar P; Kumar A J Biomol Struct Dyn; 2022 Jul; 40(11):4815-4831. PubMed ID: 33463407 [TBL] [Abstract][Full Text] [Related]
8. Development a multi-epitope driven subunit vaccine for immune response reinforcement against Serogroup B of Neisseria meningitidis using comprehensive immunoinformatics approaches. Rostamtabar M; Rahmani A; Baee M; Karkhah A; Prajapati VK; Ebrahimpour S; Nouri HR Infect Genet Evol; 2019 Nov; 75():103992. PubMed ID: 31394292 [TBL] [Abstract][Full Text] [Related]
9. Contriving multi-epitope vaccine ensemble for monkeypox disease using an immunoinformatics approach. Aziz S; Almajhdi FN; Waqas M; Ullah I; Salim MA; Khan NA; Ali A Front Immunol; 2022; 13():1004804. PubMed ID: 36311762 [TBL] [Abstract][Full Text] [Related]
10. Exploring structural antigens of yellow fever virus to design multi-epitope subunit vaccine candidate by utilizing an immuno-informatics approach. Sura K; Rohilla H; Kumar D; Jakhar R; Ahlawat V; Kaushik D; Dangi M; Chhillar AK J Genet Eng Biotechnol; 2023 Dec; 21(1):161. PubMed ID: 38051433 [TBL] [Abstract][Full Text] [Related]
11. Modeling mRNA-based vaccine YFV.E1988 against yellow fever virus E-protein using immuno-informatics and reverse vaccinology approach. Khan NT; Zinnia MA; Islam ABMMK J Biomol Struct Dyn; 2023 Mar; 41(5):1617-1638. PubMed ID: 34994279 [TBL] [Abstract][Full Text] [Related]
12. Prioritization of potential vaccine candidates and designing a multiepitope-based subunit vaccine against multidrug-resistant Salmonella Typhi str. CT18: A subtractive proteomics and immunoinformatics approach. Chand Y; Singh S Microb Pathog; 2021 Oct; 159():105150. PubMed ID: 34425197 [TBL] [Abstract][Full Text] [Related]
13. Insight into the first multi-epitope-based peptide subunit vaccine against avian influenza A virus (H5N6): An immunoinformatics approach. Mia MM; Hasan M; Ahmed S; Rahman MN Infect Genet Evol; 2022 Oct; 104():105355. PubMed ID: 36007760 [TBL] [Abstract][Full Text] [Related]
14. Proteome based mapping and reverse vaccinology techniques to contrive multi-epitope based subunit vaccine (MEBSV) against Streptococcus pyogenes. Aslam S; Ashfaq UA; Zia T; Aslam N; Alrumaihi F; Shahid F; Noor F; Qasim M Infect Genet Evol; 2022 Jun; 100():105259. PubMed ID: 35231667 [TBL] [Abstract][Full Text] [Related]
15. In silico designing of a multi-epitope vaccine against Burkholderia pseudomallei: reverse vaccinology and immunoinformatics. Shahab M; Hayat C; Sikandar R; Zheng G; Akter S J Genet Eng Biotechnol; 2022 Jul; 20(1):100. PubMed ID: 35821357 [TBL] [Abstract][Full Text] [Related]
16. Designing multi-epitope vaccine against Staphylococcus aureus by employing subtractive proteomics, reverse vaccinology and immuno-informatics approaches. Tahir Ul Qamar M; Ahmad S; Fatima I; Ahmad F; Shahid F; Naz A; Abbasi SW; Khan A; Mirza MU; Ashfaq UA; Chen LL Comput Biol Med; 2021 May; 132():104389. PubMed ID: 33866250 [TBL] [Abstract][Full Text] [Related]
17. Reverse vaccinology approach to design a novel multi-epitope subunit vaccine against avian influenza A (H7N9) virus. Hasan M; Ghosh PP; Azim KF; Mukta S; Abir RA; Nahar J; Hasan Khan MM Microb Pathog; 2019 May; 130():19-37. PubMed ID: 30822457 [TBL] [Abstract][Full Text] [Related]
18. Reverse vaccinology approach to design a multi-epitope vaccine construct based on the Mycobacterium tuberculosis biomarker PE_PGRS17. Moodley A; Fatoba A; Okpeku M; Emmanuel Chiliza T; Blessing Cedric Simelane M; Pooe OJ Immunol Res; 2022 Aug; 70(4):501-517. PubMed ID: 35554858 [TBL] [Abstract][Full Text] [Related]
19. Employing an immunoinformatics approach revealed potent multi-epitope based subunit vaccine for lymphocytic choriomeningitis virus. Waqas M; Aziz S; Bushra A; Halim SA; Ali A; Ullah S; Khalid A; Abdalla AN; Khan A; Al-Harrasi A J Infect Public Health; 2023 Feb; 16(2):214-232. PubMed ID: 36603375 [TBL] [Abstract][Full Text] [Related]
20. An immunoinformatics and structural vaccinology study to design a multi-epitope vaccine against Staphylococcus aureus infection. Chatterjee R; Mahapatra SR; Dey J; Raj Takur K; Raina V; Misra N; Suar M J Mol Recognit; 2023 Apr; 36(4):e3007. PubMed ID: 36700877 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]