These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 36987664)

  • 1. A fundamental model for calculating interfacial adsorption of complex ionic and nonionic PFAS mixtures in the presence of mixed salts.
    Gao Y; Le ST; Kibbey TCG; Glamore W; O'Carroll DM
    Environ Sci Process Impacts; 2023 Nov; 25(11):1830-1838. PubMed ID: 36987664
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calculating PFAS interfacial adsorption as a function of salt concentration using model parameters determined from chemical structure.
    Le ST; Gao Y; Kibbey TCG; O'Carroll DM
    Sci Total Environ; 2022 Nov; 848():157663. PubMed ID: 35907553
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting the impact of salt mixtures on the air-water interfacial behavior of PFAS.
    Le ST; Gao Y; Kibbey TCG; Glamore WC; O'Carroll DM
    Sci Total Environ; 2022 May; 819():151987. PubMed ID: 34843785
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting Interfacial Tension and Adsorption at Fluid-Fluid Interfaces for Mixtures of PFAS and/or Hydrocarbon Surfactants.
    Guo B; Saleem H; Brusseau ML
    Environ Sci Technol; 2023 May; 57(21):8044-8052. PubMed ID: 37204869
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new framework for modeling the effect of salt on interfacial adsorption of PFAS in environmental systems.
    Le ST; Gao Y; Kibbey TCG; Glamore WC; O'Carroll DM
    Sci Total Environ; 2021 Nov; 796():148893. PubMed ID: 34265607
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of molecular structure on the adsorption of PFAS to fluid-fluid interfaces: Using QSPR to predict interfacial adsorption coefficients.
    Brusseau ML
    Water Res; 2019 Apr; 152():148-158. PubMed ID: 30665161
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of molecular structure on PFAS adsorption at air-water interfaces in electrolyte solutions.
    Brusseau ML; Van Glubt S
    Chemosphere; 2021 Oct; 281():130829. PubMed ID: 33992851
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence of surfactant and solution composition on PFAS adsorption at fluid-fluid interfaces.
    Brusseau ML; Van Glubt S
    Water Res; 2019 Sep; 161():17-26. PubMed ID: 31174056
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Air-water interfacial adsorption coefficients for PFAS when present as a multi-component mixture.
    Silva JAK; Martin WA; McCray JE
    J Contam Hydrol; 2021 Jan; 236():103731. PubMed ID: 33183849
    [TBL] [Abstract][Full Text] [Related]  

  • 10. QSPR-based prediction of air-water interfacial adsorption coefficients for nonionic PFAS with large headgroups.
    Brusseau ML
    Chemosphere; 2023 Nov; 340():139960. PubMed ID: 37633613
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The impact of multiple-component PFAS solutions on fluid-fluid interfacial adsorption and transport of PFOS in unsaturated porous media.
    Huang D; Saleem H; Guo B; Brusseau ML
    Sci Total Environ; 2022 Feb; 806(Pt 2):150595. PubMed ID: 34592291
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using foam fractionation to estimate PFAS air-water interface adsorption behaviour at ng/L and µg/L concentrations.
    Buckley T; Vuong T; Karanam K; Vo PHN; Shukla P; Firouzi M; Rudolph V
    Water Res; 2023 Jul; 239():120028. PubMed ID: 37209512
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unification of surface tension isotherms of PFOA or GenX salts in electrolyte solutions by mean ionic activity.
    Wang J; Niven RK
    Chemosphere; 2021 Oct; 280():130715. PubMed ID: 33965869
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Uptake of Poly- and Perfluoroalkyl Substances at the Air-Water Interface.
    Schaefer CE; Culina V; Nguyen D; Field J
    Environ Sci Technol; 2019 Nov; 53(21):12442-12448. PubMed ID: 31577432
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A group-contribution model for predicting the physicochemical behavior of PFAS components for understanding environmental fate.
    Le ST; Kibbey TCG; Weber KP; Glamore WC; O'Carroll DM
    Sci Total Environ; 2021 Apr; 764():142882. PubMed ID: 33127153
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of different co-foaming agents on PFAS removal from the environment by foam fractionation.
    Buckley T; Karanam K; Han H; Vo HNP; Shukla P; Firouzi M; Rudolph V
    Water Res; 2023 Feb; 230():119532. PubMed ID: 36584659
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contribution of Nonaqueous-Phase Liquids to the Retention and Transport of Per and Polyfluoroalkyl Substances (PFAS) in Porous Media.
    Van Glubt S; Brusseau ML
    Environ Sci Technol; 2021 Mar; 55(6):3706-3715. PubMed ID: 33666425
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of PFAS and Fluorinated Surfactants Using Differential Behaviors at Interfaces of Complex Droplets.
    Trinh V; Malloy CS; Durkin TJ; Gadh A; Savagatrup S
    ACS Sens; 2022 May; 7(5):1514-1523. PubMed ID: 35442626
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Examining the robustness and concentration dependency of PFAS air-water and NAPL-water interfacial adsorption coefficients.
    Brusseau ML
    Water Res; 2021 Feb; 190():116778. PubMed ID: 33387950
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced aggregation and interfacial adsorption of an aqueous film forming foam (AFFF) in high salinity matrices.
    Steffens SD; Sedlak DL; Alvarez-Cohen L
    Environ Sci Process Impacts; 2023 Dec; 25(12):2181-2188. PubMed ID: 37990920
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.