These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 36987698)

  • 1. Mapping and decoding cortical engagement during motor imagery, mental arithmetic, and silent word generation using MEG.
    Youssofzadeh V; Roy S; Chowdhury A; Izadysadr A; Parkkonen L; Raghavan M; Prasad G
    Hum Brain Mapp; 2023 Jun; 44(8):3324-3342. PubMed ID: 36987698
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessing impact of channel selection on decoding of motor and cognitive imagery from MEG data.
    Roy S; Rathee D; Chowdhury A; McCreadie K; Prasad G
    J Neural Eng; 2020 Oct; 17(5):056037. PubMed ID: 32998113
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A magnetoencephalography dataset for motor and cognitive imagery-based brain-computer interface.
    Rathee D; Raza H; Roy S; Prasad G
    Sci Data; 2021 Apr; 8(1):120. PubMed ID: 33927204
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparing Features for Classification of MEG Responses to Motor Imagery.
    Halme HL; Parkkonen L
    PLoS One; 2016; 11(12):e0168766. PubMed ID: 27992574
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of tDCS stimulation of motor cortex and cerebellum on EEG classification of motor imagery and sensorimotor band power.
    Angulo-Sherman IN; Rodríguez-Ugarte M; Sciacca N; Iáñez E; Azorín JM
    J Neuroeng Rehabil; 2017 Apr; 14(1):31. PubMed ID: 28420382
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improvements in event-related desynchronization and classification performance of motor imagery using instructive dynamic guidance and complex tasks.
    Bian Y; Qi H; Zhao L; Ming D; Guo T; Fu X
    Comput Biol Med; 2018 May; 96():266-273. PubMed ID: 29660675
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mapping language from MEG beta power modulations during auditory and visual naming.
    Youssofzadeh V; Stout J; Ustine C; Gross WL; Conant LL; Humphries CJ; Binder JR; Raghavan M
    Neuroimage; 2020 Oct; 220():117090. PubMed ID: 32593799
    [TBL] [Abstract][Full Text] [Related]  

  • 8. EEG-based Classification of Lower Limb Motor Imagery with Brain Network Analysis.
    Gu L; Yu Z; Ma T; Wang H; Li Z; Fan H
    Neuroscience; 2020 Jun; 436():93-109. PubMed ID: 32283182
    [TBL] [Abstract][Full Text] [Related]  

  • 9. More implicit and more explicit motor imagery tasks for exploring the mental representation of hands and feet in action.
    Brusa F; Erden MS; Sedda A
    Exp Brain Res; 2023 Dec; 241(11-12):2765-2778. PubMed ID: 37855915
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Late dominance of the right hemisphere during narrative comprehension.
    Youssofzadeh V; Conant L; Stout J; Ustine C; Humphries C; Gross WL; Shah-Basak P; Mathis J; Awe E; Allen L; DeYoe EA; Carlson C; Anderson CT; Maganti R; Hermann B; Nair VA; Prabhakaran V; Meyerand B; Binder JR; Raghavan M
    Neuroimage; 2022 Dec; 264():119749. PubMed ID: 36379420
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Individually adapted imagery improves brain-computer interface performance in end-users with disability.
    Scherer R; Faller J; Friedrich EV; Opisso E; Costa U; Kübler A; Müller-Putz GR
    PLoS One; 2015; 10(5):e0123727. PubMed ID: 25992718
    [TBL] [Abstract][Full Text] [Related]  

  • 12. EEG-based classification of imaginary left and right foot movements using beta rebound.
    Hashimoto Y; Ushiba J
    Clin Neurophysiol; 2013 Nov; 124(11):2153-60. PubMed ID: 23757379
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrating EEG and MEG Signals to Improve Motor Imagery Classification in Brain-Computer Interface.
    Corsi MC; Chavez M; Schwartz D; Hugueville L; Khambhati AN; Bassett DS; De Vico Fallani F
    Int J Neural Syst; 2019 Feb; 29(1):1850014. PubMed ID: 29768971
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of real-time cortical feedback in motor imagery-based mental practice training.
    Bai O; Huang D; Fei DY; Kunz R
    NeuroRehabilitation; 2014; 34(2):355-63. PubMed ID: 24401829
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Whatever works: a systematic user-centered training protocol to optimize brain-computer interfacing individually.
    Friedrich EV; Neuper C; Scherer R
    PLoS One; 2013; 8(9):e76214. PubMed ID: 24086710
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pure visual imagery as a potential approach to achieve three classes of control for implementation of BCI in non-motor disorders.
    Sousa T; Amaral C; Andrade J; Pires G; Nunes UJ; Castelo-Branco M
    J Neural Eng; 2017 Aug; 14(4):046026. PubMed ID: 28466825
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of distinct mental strategies on classification performance for brain-computer interfaces.
    Friedrich EV; Scherer R; Neuper C
    Int J Psychophysiol; 2012 Apr; 84(1):86-94. PubMed ID: 22289414
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Across-subject offline decoding of motor imagery from MEG and EEG.
    Halme HL; Parkkonen L
    Sci Rep; 2018 Jul; 8(1):10087. PubMed ID: 29973645
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mental operations in rhythm: Motor-to-sensory transformation mediates imagined singing.
    Li Y; Luo H; Tian X
    PLoS Biol; 2020 Oct; 18(10):e3000504. PubMed ID: 33017389
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metaheuristic Optimization-Based Feature Selection for Imagery and Arithmetic Tasks: An fNIRS Study.
    Zafar A; Hussain SJ; Ali MU; Lee SW
    Sensors (Basel); 2023 Apr; 23(7):. PubMed ID: 37050774
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.