These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 36987711)

  • 21. Preparations of Tough and Conductive PAMPS/PAA Double Network Hydrogels Containing Cellulose Nanofibers and Polypyrroles.
    Tu CW; Tsai FC; Chen JK; Wang HP; Lee RH; Zhang J; Chen T; Wang CC; Huang CF
    Polymers (Basel); 2020 Nov; 12(12):. PubMed ID: 33260522
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Counteranion-Mediated Intrinsic Healing of Poly(ionic liquid) Copolymers.
    Guo P; Zhang H; Liu X; Sun J
    ACS Appl Mater Interfaces; 2018 Jan; 10(2):2105-2113. PubMed ID: 29264915
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rapid shape memory TEMPO-oxidized cellulose nanofibers/polyacrylamide/gelatin hydrogels with enhanced mechanical strength.
    Li N; Chen W; Chen G; Tian J
    Carbohydr Polym; 2017 Sep; 171():77-84. PubMed ID: 28578973
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Transparent Stretchable Dual-Network Ionogel with Temperature Tolerance for High-Performance Flexible Strain Sensors.
    Lan J; Li Y; Yan B; Yin C; Ran R; Shi LY
    ACS Appl Mater Interfaces; 2020 Aug; 12(33):37597-37606. PubMed ID: 32700894
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of the constituent networks of double-network gels on their mechanical properties and energy dissipation process.
    Nakajima T; Kurokawa T; Furukawa H; Gong JP
    Soft Matter; 2020 Sep; 16(37):8618-8627. PubMed ID: 32844868
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of antibacterial aerogel based on ɛ-poly-l-lysine/nanocellulose by using citric acid as crosslinker.
    Wang C; Cao H; Jia L; Liu W; Liu P
    Carbohydr Polym; 2022 Sep; 291():119568. PubMed ID: 35698390
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synthesis of poly(ionic liquid) for trifunctional epoxy resin with simultaneously enhancing the toughness, thermal and dielectric performances.
    Yin B; Xu W; Liu C; Kong M; Lv Y; Huang Y; Yang Q; Li G
    RSC Adv; 2020 Jan; 10(4):2085-2095. PubMed ID: 35494607
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Production and Mechanical Characterisation of TEMPO-Oxidised Cellulose Nanofibrils/β-Cyclodextrin Films and Cryogels.
    Michel B; Bras J; Dufresne A; Heggset EB; Syverud K
    Molecules; 2020 May; 25(10):. PubMed ID: 32443918
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Surface effects on the structure and mobility of the ionic liquid C6C1ImTFSI in silica gels.
    Nayeri M; Aronson MT; Bernin D; Chmelka BF; Martinelli A
    Soft Matter; 2014 Aug; 10(30):5618-27. PubMed ID: 24965195
    [TBL] [Abstract][Full Text] [Related]  

  • 30. New Insights on the Fast Response of Poly(Ionic Liquid)s to Humidity: The Effect of Free-Ion Concentration.
    Nie J; Xiao S; Tan R; Wang T; Duan X
    Nanomaterials (Basel); 2019 May; 9(5):. PubMed ID: 31100809
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Poly(ionic liquid) Gel Electrolyte for Efficient all Solid Electrochemical Double-Layer Capacitor.
    Taghavikish M; Subianto S; Gu Y; Sun X; Zhao XS; Choudhury NR
    Sci Rep; 2018 Jul; 8(1):10918. PubMed ID: 30026611
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mechanical and microstructural studies in a polysaccharide-acrylate double network hydrogel.
    Torris A; Nair S; K P RM; Sengupta P; Badiger M
    J Mech Behav Biomed Mater; 2021 Dec; 124():104839. PubMed ID: 34547607
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ion gels prepared by in situ radical polymerization of vinyl monomers in an ionic liquid and their characterization as polymer electrolytes.
    Susan MA; Kaneko T; Noda A; Watanabe M
    J Am Chem Soc; 2005 Apr; 127(13):4976-83. PubMed ID: 15796564
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synthesis and Fracture Process Analysis of Double Network Hydrogels with a Well-Defined First Network.
    Nakajima T; Fukuda Y; Kurokawa T; Sakai T; Chung UI; Gong JP
    ACS Macro Lett; 2013 Jun; 2(6):518-521. PubMed ID: 35581809
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tough hybrid microgel-reinforced hydrogels dependent on the size and modulus of the microgels.
    Li C; Zhou X; Zhu L; Xu Z; Tan P; Wang H; Chen G; Zhou X
    Soft Matter; 2021 Feb; 17(6):1566-1573. PubMed ID: 33346314
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ionic Conductivity Enhancement in UHMW PEO Gel Electrolytes Based on Room-Temperature Ionic Liquids and Deep Eutectic Solvents.
    Gregorio V; García N; Tiemblo P
    ACS Appl Polym Mater; 2022 Apr; 4(4):2860-2870. PubMed ID: 35434637
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of Cellulose Nanofibrils and TEMPO-mediated Oxidized Cellulose Nanofibrils on the Physical and Mechanical Properties of Poly(vinylidene fluoride)/Cellulose Nanofibril Composites.
    Barnes E; Jefcoat JA; Alberts EM; McKechnie MA; Peel HR; Buchanan JP; Weiss CA; Klaus KL; Mimun LC; Warner CM
    Polymers (Basel); 2019 Jun; 11(7):. PubMed ID: 31252644
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tough ion gels composed of coordinatively crosslinked polymer networks using ZIF-8 nanoparticles as multifunctional crosslinkers.
    Kamio E; Minakata M; Nakamura H; Matsuoka A; Matsuyama H
    Soft Matter; 2022 Jun; 18(25):4725-4736. PubMed ID: 35703111
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rice Husk-Derived Cellulose Nanofibers: A Potential Sensor for Water-Soluble Gases.
    Shahi N; Lee E; Min B; Kim DJ
    Sensors (Basel); 2021 Jun; 21(13):. PubMed ID: 34203163
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanically Tunable, Readily Processable Ion Gels by Self-Assembly of Block Copolymers in Ionic Liquids.
    Lodge TP; Ueki T
    Acc Chem Res; 2016; 19(10):2107-2114. PubMed ID: 27704769
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.