BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 36987974)

  • 1. A Versatile Sulfur-Assisted Pyrolysis Strategy for High-Atom-Economy Upcycling of Waste Plastics into High-Value Carbon Materials.
    Tang Y; Cen Z; Ma Q; Zheng B; Cai Z; Liu S; Wu D
    Adv Sci (Weinh); 2023 May; 10(15):e2206924. PubMed ID: 36987974
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent Advancements in Pyrolysis of Halogen-Containing Plastics for Resource Recovery and Halogen Upcycling: A State-of-the-Art Review.
    Ma C; Kumagai S; Saito Y; Yoshioka T; Huang X; Shao Y; Ran J; Sun L
    Environ Sci Technol; 2024 Jan; 58(3):1423-1440. PubMed ID: 38197317
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical Upcycling of Waste Plastics to High Value-Added Products via Pyrolysis: Current Trends, Future Perspectives, and Techno-Feasibility Analysis.
    Hussain I; Aitani A; Malaibari Z; Alasiri H; Naseem Akhtar M; Fahad Aldosari O; Ahmed S
    Chem Rec; 2023 Apr; 23(4):e202200294. PubMed ID: 36850030
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pyrolysis-catalysis upcycling of waste plastic using a multilayer stainless-steel catalyst toward a circular economy.
    Liu Q; Jiang D; Zhou H; Yuan X; Wu C; Hu C; Luque R; Wang S; Chu S; Xiao R; Zhang H
    Proc Natl Acad Sci U S A; 2023 Sep; 120(39):e2305078120. PubMed ID: 37695879
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Waste to Wealth: Chemical Recycling and Chemical Upcycling of Waste Plastics for a Great Future.
    Chen H; Wan K; Zhang Y; Wang Y
    ChemSusChem; 2021 Oct; 14(19):4123-4136. PubMed ID: 33998153
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Upcycling Plastic Waste into High Value-Added Carbonaceous Materials.
    Choi J; Yang I; Kim SS; Cho SY; Lee S
    Macromol Rapid Commun; 2022 Jan; 43(1):e2100467. PubMed ID: 34643991
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Review of polymer technologies for improving the recycling and upcycling efficiency of plastic waste.
    Jung H; Shin G; Kwak H; Hao LT; Jegal J; Kim HJ; Jeon H; Park J; Oh DX
    Chemosphere; 2023 Apr; 320():138089. PubMed ID: 36754297
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Upcycling Plastic Wastes into Value-Added Products by Heterogeneous Catalysis.
    Tan T; Wang W; Zhang K; Zhan Z; Deng W; Zhang Q; Wang Y
    ChemSusChem; 2022 Jul; 15(14):e202200522. PubMed ID: 35438240
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Current Developments in the Chemical Upcycling of Waste Plastics Using Alternative Energy Sources.
    Karimi Estahbanati MR; Kong XY; Eslami A; Soo HS
    ChemSusChem; 2021 Oct; 14(19):4152-4166. PubMed ID: 34048150
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plastic waste management: A road map to achieve circular economy and recent innovations in pyrolysis.
    N S
    Sci Total Environ; 2022 Feb; 809():151160. PubMed ID: 34695478
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous production of high-valued carbon nanotubes and hydrogen from catalytic pyrolysis of waste plastics: The role of cellulose impurity.
    Liu Q; Peng B; Cai N; Su Y; Wang S; Wu P; Cao Q; Zhang H
    Waste Manag; 2024 Feb; 174():420-428. PubMed ID: 38104414
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Life cycle environmental impacts of chemical recycling via pyrolysis of mixed plastic waste in comparison with mechanical recycling and energy recovery.
    Jeswani H; Krüger C; Russ M; Horlacher M; Antony F; Hann S; Azapagic A
    Sci Total Environ; 2021 May; 769():144483. PubMed ID: 33486181
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biological Upcycling of Plastics Waste.
    Klauer RR; Hansen DA; Wu D; Monteiro LMO; Solomon KV; Blenner MA
    Annu Rev Chem Biomol Eng; 2024 Apr; ():. PubMed ID: 38621232
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pyrolysis of waste surgical masks into liquid fuel and its life-cycle assessment.
    Li C; Yuan X; Sun Z; Suvarna M; Hu X; Wang X; Ok YS
    Bioresour Technol; 2022 Feb; 346():126582. PubMed ID: 34953989
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synergistic effects of CO
    Kwon D; Jung S; Lin KA; Tsang YF; Park YK; Kwon EE
    J Hazard Mater; 2021 Oct; 419():126537. PubMed ID: 34323732
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synergistic interaction between scrap tyre and plastics for the production of sulphur-free, light oil from fast co-pyrolysis.
    Dewi WN; Zhou Q; Mollah M; Yang S; Ilankoon IMSK; Chaffee A; Zhang L
    Waste Manag; 2024 Apr; 179():99-109. PubMed ID: 38471253
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [MIXed plastics biodegradation and UPcycling using microbial communities: the NSFC-EU 2019 project MIX-UP to help achieve "carbon neutrality"].
    Zhou J; Su H; Wu Q; Xing J; Dong W; Jiang M
    Sheng Wu Gong Cheng Xue Bao; 2021 Oct; 37(10):3414-3424. PubMed ID: 34708601
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Can Pyrolysis Oil Be Used as a Feedstock to Close the Gap in the Circular Economy of Polyolefins?
    Erkmen B; Ozdogan A; Ezdesir A; Celik G
    Polymers (Basel); 2023 Feb; 15(4):. PubMed ID: 36850143
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polyurethane with β-Selenocarbonyl Structure Enabling the Combination of Plastic Degradation and Waste Upcycling.
    He C; Liu C; Pan S; Tan Y; Guan J; Xu H
    Angew Chem Int Ed Engl; 2024 Feb; 63(7):e202317558. PubMed ID: 38156718
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Disposal of plastic mulching film through CO
    Jung JM; Cho SH; Jung S; Lin KA; Chen WH; Tsang YF; Kwon EE
    J Hazard Mater; 2022 May; 430():128454. PubMed ID: 35168100
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.