These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 36987974)

  • 21. A review on thermal and catalytic pyrolysis of plastic solid waste (PSW).
    Al-Salem SM; Antelava A; Constantinou A; Manos G; Dutta A
    J Environ Manage; 2017 Jul; 197():177-198. PubMed ID: 28384612
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Critical Role of Process Analysis in Chemical Recycling and Upcycling of Waste Plastics.
    Nicholson SR; Rorrer JE; Singh A; Konev MO; Rorrer NA; Carpenter AC; Jacobsen AJ; Román-Leshkov Y; Beckham GT
    Annu Rev Chem Biomol Eng; 2022 Jun; 13():301-324. PubMed ID: 35320697
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Upcycling face mask wastes generated during COVID-19 into value-added engineering materials: A review.
    Pourebrahimi S
    Sci Total Environ; 2022 Dec; 851(Pt 2):158396. PubMed ID: 36055514
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Recent Advances in Biological Recycling of Polyethylene Terephthalate (PET) Plastic Wastes.
    Soong YV; Sobkowicz MJ; Xie D
    Bioengineering (Basel); 2022 Feb; 9(3):. PubMed ID: 35324787
    [TBL] [Abstract][Full Text] [Related]  

  • 25. CO
    Ding Y; Zhang S; Liu C; Shao Y; Pan X; Bao X
    Natl Sci Rev; 2024 May; 11(5):nwae097. PubMed ID: 38660412
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Recent Advances in the Chemobiological Upcycling of Polyethylene Terephthalate (PET) into Value-Added Chemicals.
    Mudondo J; Lee HS; Jeong Y; Kim TH; Kim S; Sung BH; Park SH; Park K; Cha HG; Yeon YJ; Kim HT
    J Microbiol Biotechnol; 2023 Jan; 33(1):1-14. PubMed ID: 36451300
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Transportation fuel from plastic: Two cases of study.
    Faussone GC
    Waste Manag; 2018 Mar; 73():416-423. PubMed ID: 29158003
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Physico-chemical properties of excavated plastic from landfill mining and current recycling routes.
    Canopoli L; Fidalgo B; Coulon F; Wagland ST
    Waste Manag; 2018 Jun; 76():55-67. PubMed ID: 29622377
    [TBL] [Abstract][Full Text] [Related]  

  • 29. "Functional upcycling" of polymer waste towards the design of new materials.
    Guselnikova O; Semyonov O; Sviridova E; Gulyaev R; Gorbunova A; Kogolev D; Trelin A; Yamauchi Y; Boukherroub R; Postnikov P
    Chem Soc Rev; 2023 Jul; 52(14):4755-4832. PubMed ID: 37403690
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Processing real-world waste plastics by pyrolysis-reforming for hydrogen and high-value carbon nanotubes.
    Wu C; Nahil MA; Miskolczi N; Huang J; Williams PT
    Environ Sci Technol; 2014; 48(1):819-26. PubMed ID: 24283272
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The metabolic potential of plastics as biotechnological carbon sources - Review and targets for the future.
    Tiso T; Winter B; Wei R; Hee J; de Witt J; Wierckx N; Quicker P; Bornscheuer UT; Bardow A; Nogales J; Blank LM
    Metab Eng; 2022 May; 71():77-98. PubMed ID: 34952231
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cascade degradation and upcycling of polystyrene waste to high-value chemicals.
    Xu Z; Pan F; Sun M; Xu J; Munyaneza NE; Croft ZL; Cai GG; Liu G
    Proc Natl Acad Sci U S A; 2022 Aug; 119(34):e2203346119. PubMed ID: 35969757
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sustainable and Highly Efficient Recycling of Plastic Waste into Syngas via a Chemical Looping Scheme.
    Hu Q; Ok YS; Wang CH
    Environ Sci Technol; 2022 Jun; 56(12):8953-8963. PubMed ID: 35648174
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Upcycling of Plastic Wastes and Biomass for Sustainable Graphitic Carbon Production: A Critical Review.
    Weldekidan H; Mohanty AK; Misra M
    ACS Environ Au; 2022 Nov; 2(6):510-522. PubMed ID: 36411867
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pyrolytic conversion of waste plastics to energy products: A review on yields, properties, and production costs.
    Faisal F; Rasul MG; Jahirul MI; Schaller D
    Sci Total Environ; 2023 Feb; 861():160721. PubMed ID: 36496020
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mining the Carbon Intermediates in Plastic Waste Upcycling for Constructing C-S Bond.
    Kang H; He D; Turchiano C; Yan X; Chai J; Weed M; Elliott GI; Onofrei D; Pan X; Xiao X; Gu J
    J Am Chem Soc; 2024 Jul; 146(27):18639-18649. PubMed ID: 38916586
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Conventional pyrolysis of Plastic waste for Product recovery and utilization of pyrolytic gases for carbon nanotubes production.
    Singh RK; Ruj B; Sadhukhan AK; Gupta P
    Environ Sci Pollut Res Int; 2022 Mar; 29(14):20007-20016. PubMed ID: 33179183
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Polydiketoenamines for a Circular Plastics Economy.
    Helms BA
    Acc Chem Res; 2022 Oct; 55(19):2753-2765. PubMed ID: 36108255
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Environmental impacts of post-consumer plastic wastes: Treatment technologies towards eco-sustainability and circular economy.
    Chawla S; Varghese BS; A C; Hussain CG; Keçili R; Hussain CM
    Chemosphere; 2022 Dec; 308(Pt 1):135867. PubMed ID: 35998732
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Critical advances and future opportunities in upcycling commodity polymers.
    Jehanno C; Alty JW; Roosen M; De Meester S; Dove AP; Chen EY; Leibfarth FA; Sardon H
    Nature; 2022 Mar; 603(7903):803-814. PubMed ID: 35354997
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.