These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
229 related articles for article (PubMed ID: 36988736)
21. Advances of Carbon Materials for Dual-Carbon Lithium-Ion Capacitors: A Review. Duan Y; Li C; Ye Z; Li H; Yang Y; Sui D; Lu Y Nanomaterials (Basel); 2022 Nov; 12(22):. PubMed ID: 36432240 [TBL] [Abstract][Full Text] [Related]
22. Study of Zinc Diffusion Based on S, N-Codoped Honeycomb Carbon Cathodes for High-Performance Zinc-Ion Capacitors. Zhang Q; Yuan M; Liu L; Li S; Chen X; Liu J; Pang X; Wang X Langmuir; 2024 Mar; 40(10):5326-5337. PubMed ID: 38408337 [TBL] [Abstract][Full Text] [Related]
23. π-Conjugated molecule mediated self-doped hierarchical porous carbons via self-stacking interaction for high-energy and ultra-stable zinc-ion hybrid capacitors. Hu C; Qin Y; Song Z; Liu P; Miao L; Duan H; Lv Y; Xie L; Liu M; Gan L J Colloid Interface Sci; 2024 Mar; 658():856-864. PubMed ID: 38157610 [TBL] [Abstract][Full Text] [Related]
24. Na Lu R; Ren X; Wang C; Zhan C; Nan D; Lv R; Shen W; Kang F; Huang ZH Materials (Basel); 2020 Dec; 14(1):. PubMed ID: 33396727 [TBL] [Abstract][Full Text] [Related]
25. Active Materials for Aqueous Zinc Ion Batteries: Synthesis, Crystal Structure, Morphology, and Electrochemistry. Jia X; Liu C; Neale ZG; Yang J; Cao G Chem Rev; 2020 Aug; 120(15):7795-7866. PubMed ID: 32786670 [TBL] [Abstract][Full Text] [Related]
26. Toward Flexible Zinc-Ion Hybrid Capacitors with Superhigh Energy Density and Ultralong Cycling Life: The Pivotal Role of ZnCl Wang C; Pei Z; Meng Q; Zhang C; Sui X; Yuan Z; Wang S; Chen Y Angew Chem Int Ed Engl; 2021 Jan; 60(2):990-997. PubMed ID: 32969140 [TBL] [Abstract][Full Text] [Related]
27. Carbon-Based Materials for Lithium-Ion Batteries, Electrochemical Capacitors, and Their Hybrid Devices. Yao F; Pham DT; Lee YH ChemSusChem; 2015 Jul; 8(14):2284-311. PubMed ID: 26140707 [TBL] [Abstract][Full Text] [Related]
28. P-doped porous carbon derived from walnut shell for zinc ion hybrid capacitors. Sun H; Liu C; Guo D; Liang S; Xie W; Liu S; Li Z RSC Adv; 2022 Aug; 12(38):24724-24733. PubMed ID: 36128395 [TBL] [Abstract][Full Text] [Related]
29. Enhanced energy storage of aqueous zinc-carbon hybrid supercapacitors via employing alkaline medium and B, N dual doped carbon cathode. Han L; Zhang X; Li J; Huang H; Xu X; Liu X; Yang Z; Xu M; Pan L J Colloid Interface Sci; 2021 Oct; 599():556-565. PubMed ID: 33964700 [TBL] [Abstract][Full Text] [Related]
30. Nanoconfined Supercooled Water in Hydrated Two-Dimensional Polyaniline for Sub-Zero Solid-State Zinc-Ion Hybrid Capacitor. Liang J; Rawal A; Wang B; Xiao K; Lennon A; Wang DW Small; 2024 Nov; 20(46):e2402016. PubMed ID: 39082417 [TBL] [Abstract][Full Text] [Related]
31. Graphene-Based Cathode Materials for Lithium-Ion Capacitors: A Review. Sui D; Chang M; Peng Z; Li C; He X; Yang Y; Liu Y; Lu Y Nanomaterials (Basel); 2021 Oct; 11(10):. PubMed ID: 34685207 [TBL] [Abstract][Full Text] [Related]
32. Molten Salt Self-Template Synthesis Strategy of Oxygen-Rich Porous Carbon Cathodes for Zinc Ion Hybrid Capacitors. Zhao L; Jian W; Zhu J; Zhang X; Wen F; Fei X; Chen L; Huang S; Yin J; Chodankar NR; Qiu X; Zhang W ACS Appl Mater Interfaces; 2022 Sep; 14(38):43431-43441. PubMed ID: 36112058 [TBL] [Abstract][Full Text] [Related]
33. Synergistic effect of nitrogen and oxygen dopants in 3D hierarchical porous carbon cathodes for ultra-fast zinc ion hybrid supercapacitors. Wen F; Yan Y; Sun S; Li X; He X; Meng Q; Zhe Liu J; Qiu X; Zhang W J Colloid Interface Sci; 2023 Jun; 640():1029-1039. PubMed ID: 36913835 [TBL] [Abstract][Full Text] [Related]
34. A ZIF-8 Host for Dendrite-Free Zinc Anodes and N,O Dual-doped Carbon Cathodes for High-Performance Zinc-Ion Hybrid Capacitors. Lei L; Zheng Y; Zhang X; Su Y; Zhou X; Wu S; Shen J Chem Asian J; 2021 Aug; 16(15):2146-2153. PubMed ID: 34132493 [TBL] [Abstract][Full Text] [Related]
36. 3D Porous Oxygen-Doped and Nitrogen-Doped Graphitic Carbons Derived from Metal Azolate Frameworks as Cathode and Anode Materials for High-Performance Dual-Carbon Sodium-Ion Hybrid Capacitors. Jung YM; Choi JH; Kim DW; Kang JK Adv Sci (Weinh); 2023 Aug; 10(24):e2301160. PubMed ID: 37328437 [TBL] [Abstract][Full Text] [Related]
37. Enabling Multi-Chemisorption Sites on Carbon Nanofibers Cathodes by an In-situ Exfoliation Strategy for High-Performance Zn-Ion Hybrid Capacitors. He H; Lian J; Chen C; Xiong Q; Li CC; Zhang M Nanomicro Lett; 2022 Apr; 14(1):106. PubMed ID: 35426577 [TBL] [Abstract][Full Text] [Related]
38. Mesoporous Carbon-Based Materials for Enhancing the Performance of Lithium-Sulfur Batteries. Wang F; Han Y; Feng X; Xu R; Li A; Wang T; Deng M; Tong C; Li J; Wei Z Int J Mol Sci; 2023 Apr; 24(8):. PubMed ID: 37108464 [TBL] [Abstract][Full Text] [Related]
39. Constructing hollow nanotube-like amorphous vanadium oxide and carbon hybrid via in-situ electrochemical induction for high-performance aqueous zinc-ion batteries. Li C; Li M; Xu H; Zhao F; Gong S; Wang H; Qi J; Wang Z; Fan X; Peng W; Liu J J Colloid Interface Sci; 2022 Oct; 623():277-284. PubMed ID: 35597011 [TBL] [Abstract][Full Text] [Related]
40. Toward Long-Life Aqueous Zinc Ion Batteries by Constructing Stable Zinc Anodes. Liu Y; Liu Y; Wu X Chem Rec; 2022 Oct; 22(10):e202200088. PubMed ID: 35652535 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]