These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 36988895)

  • 1. Global change effects on biogeochemical mercury cycling.
    Sonke JE; Angot H; Zhang Y; Poulain A; Björn E; Schartup A
    Ambio; 2023 May; 52(5):853-876. PubMed ID: 36988895
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A review of global environmental mercury processes in response to human and natural perturbations: Changes of emissions, climate, and land use.
    Obrist D; Kirk JL; Zhang L; Sunderland EM; Jiskra M; Selin NE
    Ambio; 2018 Mar; 47(2):116-140. PubMed ID: 29388126
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How closely do mercury trends in fish and other aquatic wildlife track those in the atmosphere? - Implications for evaluating the effectiveness of the Minamata Convention.
    Wang F; Outridge PM; Feng X; Meng B; Heimbürger-Boavida LE; Mason RP
    Sci Total Environ; 2019 Jul; 674():58-70. PubMed ID: 31003088
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Minderoo-Monaco Commission on Plastics and Human Health.
    Landrigan PJ; Raps H; Cropper M; Bald C; Brunner M; Canonizado EM; Charles D; Chiles TC; Donohue MJ; Enck J; Fenichel P; Fleming LE; Ferrier-Pages C; Fordham R; Gozt A; Griffin C; Hahn ME; Haryanto B; Hixson R; Ianelli H; James BD; Kumar P; Laborde A; Law KL; Martin K; Mu J; Mulders Y; Mustapha A; Niu J; Pahl S; Park Y; Pedrotti ML; Pitt JA; Ruchirawat M; Seewoo BJ; Spring M; Stegeman JJ; Suk W; Symeonides C; Takada H; Thompson RC; Vicini A; Wang Z; Whitman E; Wirth D; Wolff M; Yousuf AK; Dunlop S
    Ann Glob Health; 2023; 89(1):23. PubMed ID: 36969097
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Looping Mercury Cycle in Global Environmental-Economic System Modeling.
    Li Y; Chen L; Liang S; Zhou H; Liu YR; Zhong H; Yang Z
    Environ Sci Technol; 2022 Mar; 56(5):2861-2879. PubMed ID: 35129955
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of global warming on regional cycling of mercury and persistent organic pollutants on the Tibetan Plateau: current progress and future prospects.
    Chai L; Zhou Y; Wang X
    Environ Sci Process Impacts; 2022 Oct; 24(10):1616-1630. PubMed ID: 35770617
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mercury pollution in China: implications on the implementation of the Minamata Convention.
    Feng X; Li P; Fu X; Wang X; Zhang H; Lin CJ
    Environ Sci Process Impacts; 2022 May; 24(5):634-648. PubMed ID: 35485580
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Global mercury concentrations in biota: their use as a basis for a global biomonitoring framework.
    Evers DC; Ackerman JT; Åkerblom S; Bally D; Basu N; Bishop K; Bodin N; Braaten HFV; Burton MEH; Bustamante P; Chen C; Chételat J; Christian L; Dietz R; Drevnick P; Eagles-Smith C; Fernandez LE; Hammerschlag N; Harmelin-Vivien M; Harte A; Krümmel EM; Brito JL; Medina G; Barrios Rodriguez CA; Stenhouse I; Sunderland E; Takeuchi A; Tear T; Vega C; Wilson S; Wu P
    Ecotoxicology; 2024 Jul; 33(4-5):325-396. PubMed ID: 38683471
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mercury in freshwater ecosystems of the Canadian Arctic: recent advances on its cycling and fate.
    Chételat J; Amyot M; Arp P; Blais JM; Depew D; Emmerton CA; Evans M; Gamberg M; Gantner N; Girard C; Graydon J; Kirk J; Lean D; Lehnherr I; Muir D; Nasr M; Poulain AJ; Power M; Roach P; Stern G; Swanson H; van der Velden S
    Sci Total Environ; 2015 Mar; 509-510():41-66. PubMed ID: 24993511
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Climate change dynamics and mercury temporal trends in Northeast Arctic cod (Gadus morhua) from the Barents Sea ecosystem.
    Bank MS; Ho QT; Ingvaldsen RB; Duinker A; Nilsen BM; Maage A; Frantzen S
    Environ Pollut; 2023 Dec; 338():122706. PubMed ID: 37821039
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Climate change and mercury in the Arctic: Biotic interactions.
    McKinney MA; Chételat J; Burke SM; Elliott KH; Fernie KJ; Houde M; Kahilainen KK; Letcher RJ; Morris AD; Muir DCG; Routti H; Yurkowski DJ
    Sci Total Environ; 2022 Aug; 834():155221. PubMed ID: 35427623
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mediterranean Mercury Assessment 2022: An Updated Budget, Health Consequences, and Research Perspectives.
    Cossa D; Knoery J; Bănaru D; Harmelin-Vivien M; Sonke JE; Hedgecock IM; Bravo AG; Rosati G; Canu D; Horvat M; Sprovieri F; Pirrone N; Heimbürger-Boavida LE
    Environ Sci Technol; 2022 Apr; 56(7):3840-3862. PubMed ID: 35244390
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Global change and mercury cycling: challenges for implementing a global mercury treaty.
    Selin NE
    Environ Toxicol Chem; 2014 Jun; 33(6):1202-10. PubMed ID: 24038450
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Climate change and mercury in the Arctic: Abiotic interactions.
    Chételat J; McKinney MA; Amyot M; Dastoor A; Douglas TA; Heimbürger-Boavida LE; Kirk J; Kahilainen KK; Outridge PM; Pelletier N; Skov H; St Pierre K; Vuorenmaa J; Wang F
    Sci Total Environ; 2022 Jun; 824():153715. PubMed ID: 35149079
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Responses of deposition and bioaccumulation in the Great Lakes region to policy and other large-scale drivers of mercury emissions.
    Perlinger JA; Urban NR; Giang A; Selin NE; Hendricks AN; Zhang H; Kumar A; Wu S; Gagnon VS; Gorman HS; Norman ES
    Environ Sci Process Impacts; 2018 Jan; 20(1):195-209. PubMed ID: 29360116
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Global health effects of future atmospheric mercury emissions.
    Zhang Y; Song Z; Huang S; Zhang P; Peng Y; Wu P; Gu J; Dutkiewicz S; Zhang H; Wu S; Wang F; Chen L; Wang S; Li P
    Nat Commun; 2021 May; 12(1):3035. PubMed ID: 34031414
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mercury as a global pollutant: sources, pathways, and effects.
    Driscoll CT; Mason RP; Chan HM; Jacob DJ; Pirrone N
    Environ Sci Technol; 2013 May; 47(10):4967-83. PubMed ID: 23590191
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human Health and Ocean Pollution.
    Landrigan PJ; Stegeman JJ; Fleming LE; Allemand D; Anderson DM; Backer LC; Brucker-Davis F; Chevalier N; Corra L; Czerucka D; Bottein MD; Demeneix B; Depledge M; Deheyn DD; Dorman CJ; Fénichel P; Fisher S; Gaill F; Galgani F; Gaze WH; Giuliano L; Grandjean P; Hahn ME; Hamdoun A; Hess P; Judson B; Laborde A; McGlade J; Mu J; Mustapha A; Neira M; Noble RT; Pedrotti ML; Reddy C; Rocklöv J; Scharler UM; Shanmugam H; Taghian G; van de Water JAJM; Vezzulli L; Weihe P; Zeka A; Raps H; Rampal P
    Ann Glob Health; 2020 Dec; 86(1):151. PubMed ID: 33354517
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Are tunas relevant bioindicators of mercury concentrations in the global ocean?
    Médieu A; Lorrain A; Point D
    Ecotoxicology; 2023 Oct; 32(8):994-1009. PubMed ID: 37328690
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interpretation of the source-specific substantive control measures of the Minamata Convention on Mercury.
    You M
    Environ Int; 2015 Feb; 75():1-10. PubMed ID: 25461410
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.