These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 36989077)

  • 1. Probabilistic Points of Departure and Reference Doses for Characterizing Human Noncancer and Developmental/Reproductive Effects for 10,145 Chemicals.
    Aurisano N; Jolliet O; Chiu WA; Judson R; Jang S; Unnikrishnan A; Kosnik MB; Fantke P
    Environ Health Perspect; 2023 Mar; 131(3):37016. PubMed ID: 36989077
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probabilistic Reference and 10% Effect Concentrations for Characterizing Inhalation Non-cancer and Developmental/Reproductive Effects for 2,160 Substances.
    Aurisano N; Fantke P; Chiu WA; Judson R; Jang S; Unnikrishnan A; Jolliet O
    Environ Sci Technol; 2024 May; 58(19):8278-8288. PubMed ID: 38697947
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-Stage Machine Learning-Based Approach to Predict Points of Departure for Human Noncancer and Developmental/Reproductive Effects.
    Kvasnicka J; Aurisano N; von Borries K; Lu EH; Fantke P; Jolliet O; Wright FA; Chiu WA
    Environ Sci Technol; 2024 Sep; 58(35):15638-15649. PubMed ID: 38693844
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Beyond the RfD: Broad Application of a Probabilistic Approach to Improve Chemical Dose-Response Assessments for Noncancer Effects.
    Chiu WA; Axelrad DA; Dalaijamts C; Dockins C; Shao K; Shapiro AJ; Paoli G
    Environ Health Perspect; 2018 Jun; 126(6):067009. PubMed ID: 29968566
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.
    Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P
    Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reducing uncertainty in dose-response assessments by incorporating Bayesian benchmark dose modeling and in vitro data on population variability.
    Lu EH; Ford LC; Rusyn I; Chiu WA
    Risk Anal; 2024 Aug; ():. PubMed ID: 39148436
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conditional Toxicity Value (CTV) Predictor: An
    Wignall JA; Muratov E; Sedykh A; Guyton KZ; Tropsha A; Rusyn I; Chiu WA
    Environ Health Perspect; 2018 May; 126(5):057008. PubMed ID: 29847084
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure-based QSAR Models to Predict Repeat Dose Toxicity Points of Departure.
    Pradeep P; Friedman KP; Judson R
    Comput Toxicol; 2020 Nov; 16(November 2020):. PubMed ID: 34017928
    [TBL] [Abstract][Full Text] [Related]  

  • 9. From vision toward best practices: Evaluating
    Reardon AJF; Farmahin R; Williams A; Meier MJ; Addicks GC; Yauk CL; Matteo G; Atlas E; Harrill J; Everett LJ; Shah I; Judson R; Ramaiahgari S; Ferguson SS; Barton-Maclaren TS
    Front Toxicol; 2023; 5():1194895. PubMed ID: 37288009
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reproductive and developmental risks from ethylene oxide: a probabilistic characterization of possible regulatory thresholds.
    Evans JS; Rhomberg LR; Williams PL; Wilson AM; Baird SJ
    Risk Anal; 2001 Aug; 21(4):697-717. PubMed ID: 11726021
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of High-Throughput Model Parameterization and Data Uncertainty on Thyroid-Based Toxicological Estimates for Pesticide Chemicals.
    Carlson JM; Janulewicz PA; Kleinstreuer NC; Heiger-Bernays W
    Environ Sci Technol; 2022 May; 56(9):5620-5631. PubMed ID: 35446564
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of probabilistic methods to address variability and uncertainty in estimating risks for non-cancer health effects.
    Nielsen GH; Heiger-Bernays WJ; Levy JI; White RF; Axelrad DA; Lam J; Chartres N; Abrahamsson DP; Rayasam SDG; Shaffer RM; Zeise L; Woodruff TJ; Ginsberg GL
    Environ Health; 2023 Jan; 21(Suppl 1):129. PubMed ID: 36635712
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recommended approaches in the application of toxicogenomics to derive points of departure for chemical risk assessment.
    Farmahin R; Williams A; Kuo B; Chepelev NL; Thomas RS; Barton-Maclaren TS; Curran IH; Nong A; Wade MG; Yauk CL
    Arch Toxicol; 2017 May; 91(5):2045-2065. PubMed ID: 27928627
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of a site-specific reference dose for methylmercury for fish-eating populations.
    Shipp AM; Gentry PR; Lawrence G; Van Landingham C; Covington T; Clewell HJ; Gribben K; Crump K
    Toxicol Ind Health; 2000 Nov; 16(9-10):335-438. PubMed ID: 11762928
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemical warfare agents: estimating oral reference doses.
    Opresko DM; Young RA; Faust RA; Talmage SS; Watson AP; Ross RH; Davidson KA; King J
    Rev Environ Contam Toxicol; 1998; 156():1-183. PubMed ID: 9597943
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A microRNA or messenger RNA point of departure estimates an apical endpoint point of departure in a rat developmental toxicity model.
    Johnson KJ; Costa E; Marshall V; Sriram S; Venkatraman A; Stebbins K; LaRocca J
    Birth Defects Res; 2022 Jul; 114(11):559-576. PubMed ID: 35596682
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sources, pathways, and relative risks of contaminants in surface water and groundwater: a perspective prepared for the Walkerton inquiry.
    Ritter L; Solomon K; Sibley P; Hall K; Keen P; Mattu G; Linton B
    J Toxicol Environ Health A; 2002 Jan; 65(1):1-142. PubMed ID: 11809004
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of systematic evidence mapping to assess the impact of new research when updating health reference values: A case example using acrolein.
    Keshava C; Davis JA; Stanek J; Thayer KA; Galizia A; Keshava N; Gift J; Vulimiri SV; Woodall G; Gigot C; Garcia K; Greenhalgh A; Schulz B; Volkoff S; Camargo K; Persad AS
    Environ Int; 2020 Oct; 143():105956. PubMed ID: 32702594
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A straw man proposal for a quantitative definition of the RfD.
    Hattis D; Baird S; Goble R
    Drug Chem Toxicol; 2002 Nov; 25(4):403-36. PubMed ID: 12378950
    [TBL] [Abstract][Full Text] [Related]  

  • 20. IWGT report on quantitative approaches to genotoxicity risk assessment I. Methods and metrics for defining exposure-response relationships and points of departure (PoDs).
    MacGregor JT; Frötschl R; White PA; Crump KS; Eastmond DA; Fukushima S; Guérard M; Hayashi M; Soeteman-Hernández LG; Kasamatsu T; Levy DD; Morita T; Müller L; Schoeny R; Schuler MJ; Thybaud V; Johnson GE
    Mutat Res Genet Toxicol Environ Mutagen; 2015 May; 783():55-65. PubMed ID: 25953400
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.