BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 36989346)

  • 1. Conserved Conformational Dynamics Reveal a Key Dynamic Residue in the Gatekeeper Loop of Human Cyclophilins.
    Ahmed F; Yao XQ; Hamelberg D
    J Phys Chem B; 2023 Apr; 127(14):3139-3150. PubMed ID: 36989346
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detecting Functional Dynamics in Proteins with Comparative Perturbed-Ensembles Analysis.
    Yao XQ; Hamelberg D
    Acc Chem Res; 2019 Dec; 52(12):3455-3464. PubMed ID: 31793290
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure/epitope analysis and IgE binding activities of three cyclophilin family proteins from Dermatophagoides pteronyssinus.
    Li Y; Sun X; Yang L
    Sci Rep; 2023 Aug; 13(1):13630. PubMed ID: 37604978
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure and Dynamics of GeoCyp: A Thermophilic Cyclophilin with a Novel Substrate Binding Mechanism That Functions Efficiently at Low Temperatures.
    Holliday MJ; Camilloni C; Armstrong GS; Isern NG; Zhang F; Vendruscolo M; Eisenmesser EZ
    Biochemistry; 2015 May; 54(20):3207-17. PubMed ID: 25923019
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cis/trans isomerization in HIV-1 capsid protein catalyzed by cyclophilin A: insights from computational and theoretical studies.
    Agarwal PK
    Proteins; 2004 Aug; 56(3):449-63. PubMed ID: 15229879
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolutionarily conserved linkage between enzyme fold, flexibility, and catalysis.
    Ramanathan A; Agarwal PK
    PLoS Biol; 2011 Nov; 9(11):e1001193. PubMed ID: 22087074
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conformational plasticity of an enzyme during catalysis: intricate coupling between cyclophilin A dynamics and substrate turnover.
    McGowan LC; Hamelberg D
    Biophys J; 2013 Jan; 104(1):216-26. PubMed ID: 23332074
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cyclophilin A inhibition: targeting transition-state-bound enzyme conformations for structure-based drug design.
    Nagaraju M; McGowan LC; Hamelberg D
    J Chem Inf Model; 2013 Feb; 53(2):403-10. PubMed ID: 23312027
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamical network of residue-residue contacts reveals coupled allosteric effects in recognition, catalysis, and mutation.
    Doshi U; Holliday MJ; Eisenmesser EZ; Hamelberg D
    Proc Natl Acad Sci U S A; 2016 Apr; 113(17):4735-40. PubMed ID: 27071107
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An overview of cyclophilins in human cancers.
    Lee J; Kim SS
    J Int Med Res; 2010; 38(5):1561-74. PubMed ID: 21309470
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The intriguing cyclophilin A-HIV-1 Vpr interaction: prolyl cis/trans isomerisation catalysis and specific binding.
    Solbak SM; Reksten TR; Wray V; Bruns K; Horvli O; Raae AJ; Henklein P; Henklein P; Röder R; Mitzner D; Schubert U; Fossen T
    BMC Struct Biol; 2010 Oct; 10():31. PubMed ID: 20920334
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prolyl cis-trans isomerization as a molecular timer.
    Lu KP; Finn G; Lee TH; Nicholson LK
    Nat Chem Biol; 2007 Oct; 3(10):619-29. PubMed ID: 17876319
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of the Full Catalytic Cycle among Multiple Cyclophilin Family Members and Limitations on the Application of CPMG-RD in Reversible Catalytic Systems.
    Holliday MJ; Armstrong GS; Eisenmesser EZ
    Biochemistry; 2015 Sep; 54(38):5815-27. PubMed ID: 26335054
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hepatitis C virus NS5A protein is a substrate for the peptidyl-prolyl cis/trans isomerase activity of cyclophilins A and B.
    Hanoulle X; Badillo A; Wieruszeski JM; Verdegem D; Landrieu I; Bartenschlager R; Penin F; Lippens G
    J Biol Chem; 2009 May; 284(20):13589-13601. PubMed ID: 19297321
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catalysis of cis/trans isomerization in native HIV-1 capsid by human cyclophilin A.
    Bosco DA; Eisenmesser EZ; Pochapsky S; Sundquist WI; Kern D
    Proc Natl Acad Sci U S A; 2002 Apr; 99(8):5247-52. PubMed ID: 11929983
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational insight into small molecule inhibition of cyclophilins.
    Sambasivarao SV; Acevedo O
    J Chem Inf Model; 2011 Feb; 51(2):475-82. PubMed ID: 21194235
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cyclophilin E (CypE) Functions as a Positive Regulator in Osteoblast Differentiation by Regulating the Transcriptional Activity of Runx2.
    Piao M; Lee SH; Li Y; Choi JK; Yeo CY; Lee KY
    Cells; 2023 Oct; 12(21):. PubMed ID: 37947627
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural insights into the catalytic mechanism of cyclophilin A.
    Howard BR; Vajdos FF; Li S; Sundquist WI; Hill CP
    Nat Struct Biol; 2003 Jun; 10(6):475-81. PubMed ID: 12730686
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isoform-specific inhibition of cyclophilins.
    Daum S; Schumann M; Mathea S; Aumüller T; Balsley MA; Constant SL; de Lacroix BF; Kruska F; Braun M; Schiene-Fischer C
    Biochemistry; 2009 Jul; 48(26):6268-77. PubMed ID: 19480458
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Peptidyl prolyl cis/trans-isomerases: comparative reactivities of cyclophilins, FK506-binding proteins, and parvulins with fluorinated oligopeptide and protein substrates.
    Golbik R; Yu C; Weyher-Stingl E; Huber R; Moroder L; Budisa N; Schiene-Fischer C
    Biochemistry; 2005 Dec; 44(49):16026-34. PubMed ID: 16331962
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.