BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 36989457)

  • 1. Area-Specific, Hierarchical Nanowrinkling of Two-Dimensional Materials.
    Rhee D; Lee YL; Odom TW
    ACS Nano; 2023 Apr; 17(7):6781-6788. PubMed ID: 36989457
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiscale, Hierarchical Patterning of Graphene by Conformal Wrinkling.
    Lee WK; Kang J; Chen KS; Engel CJ; Jung WB; Rhee D; Hersam MC; Odom TW
    Nano Lett; 2016 Nov; 16(11):7121-7127. PubMed ID: 27726404
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Soft Skin Layers Enable Area-Specific, Multiscale Graphene Wrinkles with Switchable Orientations.
    Rhee D; Paci JT; Deng S; Lee WK; Schatz GC; Odom TW
    ACS Nano; 2020 Jan; 14(1):166-174. PubMed ID: 31675210
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlled Three-Dimensional Hierarchical Structuring by Memory-Based, Sequential Wrinkling.
    Lee WK; Engel CJ; Huntington MD; Hu J; Odom TW
    Nano Lett; 2015 Aug; 15(8):5624-9. PubMed ID: 26218611
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Universal Method for Creating Hierarchical Wrinkles on Thin-Film Surfaces.
    Jung WB; Cho KM; Lee WK; Odom TW; Jung HT
    ACS Appl Mater Interfaces; 2018 Jan; 10(1):1347-1355. PubMed ID: 29179552
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spontaneously Ordered Hierarchical Two-Dimensional Wrinkle Patterns in Two-Dimensional Materials.
    Thi QH; Wong LW; Liu H; Lee CS; Zhao J; Ly TH
    Nano Lett; 2020 Nov; 20(11):8420-8425. PubMed ID: 33104360
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polymer nanowrinkles with continuously tunable wavelengths.
    Huntington MD; Engel CJ; Hryn AJ; Odom TW
    ACS Appl Mater Interfaces; 2013 Jul; 5(13):6438-42. PubMed ID: 23758140
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical and electronic coupling in few-layer graphene and hBN wrinkles: a first-principles study.
    Guo Y; Qiu J; Guo W
    Nanotechnology; 2016 Dec; 27(50):505702. PubMed ID: 27855126
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controlling the orientation of nanowrinkles and nanofolds by patterning strain in a thin skin layer on a polymer substrate.
    Huntington MD; Engel CJ; Odom TW
    Angew Chem Int Ed Engl; 2014 Jul; 53(31):8117-21. PubMed ID: 24984687
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hierarchical Nanoscale Structuring of Solution-Processed 2D van der Waals Networks for Wafer-Scale, Stretchable Electronics.
    Rhee D; Han B; Jung M; Kim J; Song O; Kang J
    ACS Appl Mater Interfaces; 2022 Dec; 14(51):57153-57164. PubMed ID: 36519946
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Patterned polymer films via reactive silane infusion-induced wrinkling.
    Li Y; Peterson JJ; Jhaveri SB; Carter KR
    Langmuir; 2013 Apr; 29(14):4632-9. PubMed ID: 23496840
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Graphene Wrinkles Enable Spatially Defined Chemistry.
    Deng S; Rhee D; Lee WK; Che S; Keisham B; Berry V; Odom TW
    Nano Lett; 2019 Aug; 19(8):5640-5646. PubMed ID: 31268720
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanics Modeling of Hierarchical Wrinkle Structures from the Sequential Release of Prestrain.
    Xue Y; Lee WK; Yuan J; Odom TW; Huang Y
    Langmuir; 2018 Dec; 34(51):15749-15753. PubMed ID: 30507204
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural Defects Modulate Electronic and Nanomechanical Properties of 2D Materials.
    Tripathi M; Lee F; Michail A; Anestopoulos D; McHugh JG; Ogilvie SP; Large MJ; Graf AA; Lynch PJ; Parthenios J; Papagelis K; Roy S; Saadi MASR; Rahman MM; Pugno NM; King AAK; Ajayan PM; Dalton AB
    ACS Nano; 2021 Feb; 15(2):2520-2531. PubMed ID: 33492930
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Soft skin layers for reconfigurable and programmable nanowrinkles.
    Rhee D; Deng S; Odom TW
    Nanoscale; 2020 Dec; 12(47):23920-23928. PubMed ID: 33242039
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reversible wrinkles of monolayer graphene on a polymer substrate: toward stretchable and flexible electronics.
    Li Y
    Soft Matter; 2016 Apr; 12(13):3202-13. PubMed ID: 26924574
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interface formation in monolayer graphene-boron nitride heterostructures.
    Sutter P; Cortes R; Lahiri J; Sutter E
    Nano Lett; 2012 Sep; 12(9):4869-74. PubMed ID: 22871166
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mixed multilayered vertical heterostructures utilizing strained monolayer WS2.
    Sheng Y; Xu W; Wang X; He Z; Rong Y; Warner JH
    Nanoscale; 2016 Feb; 8(5):2639-47. PubMed ID: 26758782
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effective characterization of polymer residues on two-dimensional materials by Raman spectroscopy.
    Park JH; Choi SH; Chae WU; Stephen B; Park HK; Yang W; Kim SM; Lee JS; Kim KK
    Nanotechnology; 2015 Dec; 26(48):485701. PubMed ID: 26541553
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoscale layer of a minimized defect area of graphene and hexagonal boron nitride on copper for excellent anti-corrosion activity.
    Hwang JH; Shrestha BK; Kim JH; Seo TH; Park CH; Kim MJ
    Nanotechnology; 2021 Nov; 33(5):. PubMed ID: 34673562
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.