These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 36989467)

  • 41. Connection between liquid and non-crystalline solid phases in water.
    Martelli F; Leoni F; Sciortino F; Russo J
    J Chem Phys; 2020 Sep; 153(10):104503. PubMed ID: 32933306
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Pattern of property extrema in supercooled and stretched water models and a new correlation for predicting the stability limit of the liquid state.
    Uralcan B; Latinwo F; Debenedetti PG; Anisimov MA
    J Chem Phys; 2019 Feb; 150(6):064503. PubMed ID: 30769971
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Cavitation in metastable liquid nitrogen confined to nanoscale pores.
    Rasmussen CJ; Vishnyakov A; Thommes M; Smarsly BM; Kleitz F; Neimark AV
    Langmuir; 2010 Jun; 26(12):10147-57. PubMed ID: 20210340
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Studies of cavitation and ice nucleation in 'doubly-metastable' water: time-lapse photography and neutron diffraction.
    Barrow MS; Williams PR; Chan HH; Dore JC; Bellissent-Funel MC
    Phys Chem Chem Phys; 2012 Oct; 14(38):13255-61. PubMed ID: 22918522
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A physically constrained classical description of the homogeneous nucleation of ice in water.
    Koop T; Murray BJ
    J Chem Phys; 2016 Dec; 145(21):211915. PubMed ID: 28799369
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A Deep Potential model for liquid-vapor equilibrium and cavitation rates of water.
    Sanchez-Burgos I; Muniz MC; Espinosa JR; Panagiotopoulos AZ
    J Chem Phys; 2023 May; 158(18):. PubMed ID: 37158636
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Common microscopic structural origin for water's thermodynamic and dynamic anomalies.
    Shi R; Russo J; Tanaka H
    J Chem Phys; 2018 Dec; 149(22):224502. PubMed ID: 30553247
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Non-classical nucleation in vapor-liquid-solid growth of monolayer WS
    Qiang X; Iwamoto Y; Watanabe A; Kameyama T; He X; Kaneko T; Shibuta Y; Kato T
    Sci Rep; 2021 Nov; 11(1):22285. PubMed ID: 34782667
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Homogeneous ice nucleation rates and crystallization kinetics in transiently-heated, supercooled water films from 188 K to 230 K.
    Kimmel GA; Xu Y; Brumberg A; Petrik NG; Smith RS; Kay BD
    J Chem Phys; 2019 May; 150(20):204509. PubMed ID: 31153179
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Temperature, Pressure, and Length-Scale Dependence of Solvation in Water-like Solvents. II. Large Solvophovic Solutes.
    Cerdeiriña CA; González-Salgado D
    J Phys Chem B; 2021 Jul; 125(29):8175-8184. PubMed ID: 34269575
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Two-structure thermodynamics for the TIP4P/2005 model of water covering supercooled and deeply stretched regions.
    Biddle JW; Singh RS; Sparano EM; Ricci F; González MA; Valeriani C; Abascal JL; Debenedetti PG; Anisimov MA; Caupin F
    J Chem Phys; 2017 Jan; 146(3):034502. PubMed ID: 28109212
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Liquid nucleation around charged particles in the vapor phase.
    Kroll R; Tsori Y
    J Chem Phys; 2021 Nov; 155(17):174101. PubMed ID: 34742214
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Study of homogeneous bubble nucleation in liquid carbon dioxide by a hybrid approach combining molecular dynamics simulation and density gradient theory.
    Langenbach K; Heilig M; Horsch M; Hasse H
    J Chem Phys; 2018 Mar; 148(12):124702. PubMed ID: 29604838
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Bubble nucleation in polymer–CO2 mixtures.
    Xu X; Cristancho DE; Costeux S; Wang ZG
    Soft Matter; 2013 Oct; 9(40):9675-83. PubMed ID: 26029777
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Lifshitz theory of wetting films at three phase coexistence: The case of ice nucleation on Silver Iodide (AgI).
    Luengo-Márquez J; MacDowell LG
    J Colloid Interface Sci; 2021 May; 590():527-538. PubMed ID: 33571847
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Pressure-annealed high-density amorphous ice made from vitrified water droplets: A systematic calorimetry study on water's second glass transition.
    Bachler J; Giebelmann J; Amann-Winkel K; Loerting T
    J Chem Phys; 2022 Aug; 157(6):064502. PubMed ID: 35963736
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Discontinuous Bubble Nucleation Due to a Metastable Condensation Transition in Polymer-CO2 Mixtures.
    Xu X; Cristancho DE; Costeux S; Wang ZG
    J Phys Chem Lett; 2013 May; 4(10):1639-43. PubMed ID: 26282971
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Temperature-dependent kinetic pathways of heterogeneous ice nucleation competing between classical and non-classical nucleation.
    Li C; Liu Z; Goonetilleke EC; Huang X
    Nat Commun; 2021 Aug; 12(1):4954. PubMed ID: 34400646
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Thermodynamic stability and growth of guest-free clathrate hydrates: a low-density crystal phase of water.
    Jacobson LC; Hujo W; Molinero V
    J Phys Chem B; 2009 Jul; 113(30):10298-307. PubMed ID: 19585976
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Homogeneous ice nucleation rates for mW and TIP4P/ICE models through Lattice Mold calculations.
    Sanchez-Burgos I; Tejedor AR; Vega C; Conde MM; Sanz E; Ramirez J; Espinosa JR
    J Chem Phys; 2022 Sep; 157(9):094503. PubMed ID: 36075712
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.