BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 36989645)

  • 1. Molecularly imprinted electrochemical sensor based on synergistic interaction of honeycomb-like Ni-MOF decorated with AgNPs and N-GQDs for ultra-sensitive detection of olaquindox in animal-origin food.
    Han S; Sun R; Zhao L; Yan C; Chu H
    Food Chem; 2023 Aug; 418():136001. PubMed ID: 36989645
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecularly imprinted electrochemical sensor based on polypyrrole/dopamine@graphene incorporated with surface molecularly imprinted polymers thin film for recognition of olaquindox.
    Bai X; Zhang B; Liu M; Hu X; Fang G; Wang S
    Bioelectrochemistry; 2020 Apr; 132():107398. PubMed ID: 31837616
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel molecularly imprinted electrochemical sensor based on graphene quantum dots coated on hollow nickel nanospheres with high sensitivity and selectivity for the rapid determination of bisphenol S.
    Rao H; Zhao X; Liu X; Zhong J; Zhang Z; Zou P; Jiang Y; Wang X; Wang Y
    Biosens Bioelectron; 2018 Feb; 100():341-347. PubMed ID: 28942347
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecularly imprinted electrochemical sensor based on Au nanoparticles in carboxylated multi-walled carbon nanotubes for sensitive determination of olaquindox in food and feedstuffs.
    Wang H; Yao S; Liu Y; Wei S; Su J; Hu G
    Biosens Bioelectron; 2017 Jan; 87():417-421. PubMed ID: 27589405
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrasensitive and selective molecularly imprinted electrochemical oxaliplatin sensor based on a novel nitrogen-doped carbon nanotubes/Ag@cu MOF as a signal enhancer and reporter nanohybrid.
    Mahnashi MH; Mahmoud AM; Alhazzani K; Alanazi AZ; Alaseem AM; Algahtani MM; El-Wekil MM
    Mikrochim Acta; 2021 Mar; 188(4):124. PubMed ID: 33712895
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecularly imprinted nanoparticles doped graphene oxide based electrochemical platform for highly sensitive and selective detection of L-tyrosine.
    Mani A; Suriya R; Anirudhan TS
    Colloids Surf B Biointerfaces; 2023 Nov; 231():113580. PubMed ID: 37832174
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bisphenol A Imprinted Electrochemical Sensor Based on Graphene Quantum Dots with Boron Functionalized g-C
    Deveci HA; Mavioğlu Kaya M; Kaya İ; Bankoğlu Yola B; Atar N; Yola ML
    Biosensors (Basel); 2023 Jul; 13(7):. PubMed ID: 37504124
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Voltammetric determination of ethinylestradiol using screen-printed electrode modified with functionalized graphene, graphene quantum dots and magnetic nanoparticles coated with molecularly imprinted polymers.
    Santos AM; Wong A; Prado TM; Fava EL; Fatibello-Filho O; Sotomayor MDPT; Moraes FC
    Talanta; 2021 Mar; 224():121804. PubMed ID: 33379030
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrasensitive detection of chlortetracycline in animal-origin food using molecularly imprinted electrochemical sensor based on SnS
    Sun R; Han S; Zong W; Chu H; Zhang X; Jiang H
    Food Chem; 2024 Sep; 452():139537. PubMed ID: 38728891
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel three-dimensional molecularly imprinted polypyrrole electrochemical sensor based on MOF derived porous carbon and nitrogen doped graphene for ultrasensitive determination of dopamine.
    Bu L; Jiang D; Song Q; Shan X; Wang W; Chen Z
    Analyst; 2022 Nov; 147(22):5194-5202. PubMed ID: 36250305
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrochemical sensing of lactate by using an electrode modified with molecularly imprinted polymers, reduced graphene oxide and gold nanoparticles.
    Pereira TC; Stradiotto NR
    Mikrochim Acta; 2019 Nov; 186(12):764. PubMed ID: 31713083
    [TBL] [Abstract][Full Text] [Related]  

  • 12. D-mannitol sensor based on molecularly imprinted polymer on electrode modified with reduced graphene oxide decorated with gold nanoparticles.
    Beluomini MA; da Silva JL; Sedenho GC; Stradiotto NR
    Talanta; 2017 Apr; 165():231-239. PubMed ID: 28153247
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Construction of AuNPs/reduced graphene nanoribbons co-modified molecularly imprinted electrochemical sensor for the detection of zearalenone.
    Zhou B; Xie H; Zhou S; Sheng X; Chen L; Zhong M
    Food Chem; 2023 Oct; 423():136294. PubMed ID: 37159967
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecularly imprinted electrochemical sensor based on 3D-flower-like MoS
    Han S; Ding Y; Teng F; Yao A; Leng Q
    Food Chem; 2022 Sep; 387():132899. PubMed ID: 35405559
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A molecularly-imprinted electrochemical sensor based on a graphene-Prussian blue composite-modified glassy carbon electrode for the detection of butylated hydroxyanisole in foodstuffs.
    Cui M; Liu S; Lian W; Li J; Xu W; Huang J
    Analyst; 2013 Oct; 138(20):5949-55. PubMed ID: 23938356
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functionalized nitrogen doped graphene quantum dots and bimetallic Au/Ag core-shell decorated imprinted polymer for electrochemical sensing of anticancerous hydroxyurea.
    Pathak PK; Kumar A; Prasad BB
    Biosens Bioelectron; 2019 Feb; 127():10-18. PubMed ID: 30583281
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An electrochemical sensing platform with a molecularly imprinted polymer based on chitosan-stabilized metal@metal-organic frameworks for topotecan detection.
    Mehmandoust M; Tiris G; Pourhakkak P; Erk N; Soylak M; Kanberoglu GS; Zahmakiran M
    Mikrochim Acta; 2023 Mar; 190(4):142. PubMed ID: 36933052
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ag/N-doped reduced graphene oxide incorporated with molecularly imprinted polymer: An advanced electrochemical sensing platform for salbutamol determination.
    Li J; Xu Z; Liu M; Deng P; Tang S; Jiang J; Feng H; Qian D; He L
    Biosens Bioelectron; 2017 Apr; 90():210-216. PubMed ID: 27898378
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensitive detection of L-5-hydroxytryptophan based on molecularly imprinted polymers with graphene amplification.
    Chen L; Lian HT; Sun XY; Liu B
    Anal Biochem; 2017 Jun; 526():58-65. PubMed ID: 28327452
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A dual action electrochemical molecularly imprinted aptasensor for ultra-trace detection of carbendazim.
    Khosropour H; Keramat M; Laiwattanapaisal W
    Biosens Bioelectron; 2024 Jan; 243():115754. PubMed ID: 37857063
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.