These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
109 related articles for article (PubMed ID: 36989815)
1. Multilayer functional bionic fabricated polycaprolactone based fibrous membranes for osteochondral integrated repair. Hu Y; Yin X; Ding H; Kang M; Liang S; Wei Y; Huang D Colloids Surf B Biointerfaces; 2023 May; 225():113279. PubMed ID: 36989815 [TBL] [Abstract][Full Text] [Related]
2. Integrated polycaprolactone microsphere-based scaffolds with biomimetic hierarchy and tunable vascularization for osteochondral repair. Gu X; Zha Y; Li Y; Chen J; Liu S; Du Y; Zhang S; Wang J Acta Biomater; 2022 Mar; 141():190-197. PubMed ID: 35041901 [TBL] [Abstract][Full Text] [Related]
3. Fabrication of nanocomposite/nanofibrous functionally graded biomimetic scaffolds for osteochondral tissue regeneration. Hejazi F; Bagheri-Khoulenjani S; Olov N; Zeini D; Solouk A; Mirzadeh H J Biomed Mater Res A; 2021 Sep; 109(9):1657-1669. PubMed ID: 33687800 [TBL] [Abstract][Full Text] [Related]
4. Development of biomimetic trilayer fibrous membranes for guided bone regeneration. Sun F; Chen J; Jin S; Wang J; Man Y; Li J; Zou Q; Li Y; Zuo Y J Mater Chem B; 2019 Jan; 7(4):665-675. PubMed ID: 32254799 [TBL] [Abstract][Full Text] [Related]
5. Core-Shell Nanofibers with a Shish-Kebab Structure Simulating Collagen Fibrils for Bone Tissue Engineering. Ding H; Hu Y; Cheng Y; Yang H; Gong Y; Liang S; Wei Y; Huang D ACS Appl Bio Mater; 2021 Aug; 4(8):6167-6174. PubMed ID: 35006871 [TBL] [Abstract][Full Text] [Related]
6. [Structural control and characterization of hierarchically structured fibrous scaffolds]. Li Q; Li C; Wang F; Hu S; Wang L Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2019 Apr; 33(4):479-485. PubMed ID: 30983199 [TBL] [Abstract][Full Text] [Related]
7. Mimicking the Composition and Structure of the Osteochondral Tissue to Fabricate a Heterogeneous Three-Layer Scaffold for the Repair of Osteochondral Defects. Zhou H; Yuan L; Xu Z; Yi X; Wu X; Mu C; Ge L; Li D ACS Appl Bio Mater; 2022 Feb; 5(2):734-746. PubMed ID: 35094516 [TBL] [Abstract][Full Text] [Related]
8. Biomimetic design and fabrication of multilayered osteochondral scaffolds by low-temperature deposition manufacturing and thermal-induced phase-separation techniques. Zhang T; Zhang H; Zhang L; Jia S; Liu J; Xiong Z; Sun W Biofabrication; 2017 May; 9(2):025021. PubMed ID: 28462906 [TBL] [Abstract][Full Text] [Related]
9. Shish-kebab-structured poly(ε-caprolactone) nanofibers hierarchically decorated with chitosan-poly(ε-caprolactone) copolymers for bone tissue engineering. Jing X; Mi HY; Wang XC; Peng XF; Turng LS ACS Appl Mater Interfaces; 2015 Apr; 7(12):6955-65. PubMed ID: 25761418 [TBL] [Abstract][Full Text] [Related]
10. Selective laser sintering scaffold with hierarchical architecture and gradient composition for osteochondral repair in rabbits. Du Y; Liu H; Yang Q; Wang S; Wang J; Ma J; Noh I; Mikos AG; Zhang S Biomaterials; 2017 Aug; 137():37-48. PubMed ID: 28528301 [TBL] [Abstract][Full Text] [Related]
11. Investigation of multiphasic 3D-bioplotted scaffolds for site-specific chondrogenic and osteogenic differentiation of human adipose-derived stem cells for osteochondral tissue engineering applications. Mellor LF; Nordberg RC; Huebner P; Mohiti-Asli M; Taylor MA; Efird W; Oxford JT; Spang JT; Shirwaiker RA; Loboa EG J Biomed Mater Res B Appl Biomater; 2020 Jul; 108(5):2017-2030. PubMed ID: 31880408 [TBL] [Abstract][Full Text] [Related]
13. Cryogenic 3D printing of heterogeneous scaffolds with gradient mechanical strengths and spatial delivery of osteogenic peptide/TGF-β1 for osteochondral tissue regeneration. Wang C; Yue H; Huang W; Lin X; Xie X; He Z; He X; Liu S; Bai L; Lu B; Wei Y; Wang M Biofabrication; 2020 Mar; 12(2):025030. PubMed ID: 32106097 [TBL] [Abstract][Full Text] [Related]
14. Electrospun gelatin/poly(ε-caprolactone) fibrous scaffold modified with calcium phosphate for bone tissue engineering. Rajzer I; Menaszek E; Kwiatkowski R; Planell JA; Castano O Mater Sci Eng C Mater Biol Appl; 2014 Nov; 44():183-90. PubMed ID: 25280695 [TBL] [Abstract][Full Text] [Related]
15. In vivo evaluation of 3-dimensional polycaprolactone scaffolds for cartilage repair in rabbits. Martinez-Diaz S; Garcia-Giralt N; Lebourg M; Gómez-Tejedor JA; Vila G; Caceres E; Benito P; Pradas MM; Nogues X; Ribelles JL; Monllau JC Am J Sports Med; 2010 Mar; 38(3):509-19. PubMed ID: 20093424 [TBL] [Abstract][Full Text] [Related]
16. Calendula officinalis extract/PCL/Zein/Gum arabic nanofibrous bio-composite scaffolds via suspension, two-nozzle and multilayer electrospinning for skin tissue engineering. Pedram Rad Z; Mokhtari J; Abbasi M Int J Biol Macromol; 2019 Aug; 135():530-543. PubMed ID: 31152839 [TBL] [Abstract][Full Text] [Related]
17. Bi-layered Composite Scaffold for Repair of the Osteochondral Defects. Xu D; Cheng G; Dai J; Li Z Adv Wound Care (New Rochelle); 2021 Aug; 10(8):401-414. PubMed ID: 33076773 [No Abstract] [Full Text] [Related]
18. An interleukin-4-loaded bi-layer 3D printed scaffold promotes osteochondral regeneration. Gong L; Li J; Zhang J; Pan Z; Liu Y; Zhou F; Hong Y; Hu Y; Gu Y; Ouyang H; Zou X; Zhang S Acta Biomater; 2020 Nov; 117():246-260. PubMed ID: 33007484 [TBL] [Abstract][Full Text] [Related]