These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 3698985)

  • 1. The mechanical efficiency of locomotion in men and women with special emphasis on stretch-shortening cycle exercises.
    Aura O; Komi PV
    Eur J Appl Physiol Occup Physiol; 1986; 55(1):37-43. PubMed ID: 3698985
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of muscle fiber distribution on the mechanical efficiency of human locomotion.
    Aura O; Komi PV
    Int J Sports Med; 1987 Mar; 8 Suppl 1():30-7. PubMed ID: 3583518
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of prestretch intensity on mechanical efficiency of positive work and on elastic behavior of skeletal muscle in stretch-shortening cycle exercise.
    Aura O; Komi PV
    Int J Sports Med; 1986 Jun; 7(3):137-43. PubMed ID: 3733310
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical efficiency of locomotion in females during different kinds of muscle action.
    Kyröläinen H; Komi PV; Oksanen P; Häkkinen K; Cheng S; Kim DH
    Eur J Appl Physiol Occup Physiol; 1990; 61(5-6):446-52. PubMed ID: 2079065
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neuromuscular function and mechanical efficiency of human leg extensor muscles during jumping exercises.
    Bosco C; Ito A; Komi PV; Luhtanen P; Rahkila P; Rusko H; Viitasalo JT
    Acta Physiol Scand; 1982 Apr; 114(4):543-50. PubMed ID: 7136782
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical efficiency of pure positive and pure negative work with special reference to the work intensity.
    Aura O; Komi PV
    Int J Sports Med; 1986 Feb; 7(1):44-9. PubMed ID: 3957518
    [TBL] [Abstract][Full Text] [Related]  

  • 7. EMG activity of the leg extensor muscles with special reference to mechanical efficiency in concentric and eccentric exercise.
    Komi PV; Kaneko M; Aura O
    Int J Sports Med; 1987 Mar; 8 Suppl 1():22-9. PubMed ID: 3583516
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of pre-stretch on mechanical efficiency of human skeletal muscle.
    Bosco C; Montanari G; Tarkka I; Latteri F; Cozzi M; Iachelli G; Faina M; Colli R; Dal Monte A; La Rosa M
    Acta Physiol Scand; 1987 Nov; 131(3):323-9. PubMed ID: 3425343
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimation of errors in mechanical efficiency.
    Oksanen P; Kyröläinen H; Komi PV; Aura O
    Eur J Appl Physiol Occup Physiol; 1990; 61(5-6):473-8. PubMed ID: 2079069
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relationship between the efficiency of muscular work during jumping and the energetics of running.
    Bosco C; Montanari G; Ribacchi R; Giovenali P; Latteri F; Iachelli G; Faina M; Colli R; Dal Monte A; La Rosa M
    Eur J Appl Physiol Occup Physiol; 1987; 56(2):138-43. PubMed ID: 3569218
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of the transition time between muscle-tendon stretch and shortening on mechanical efficiency.
    Henchoz Y; Malatesta D; Gremion G; Belli A
    Eur J Appl Physiol; 2006 Apr; 96(6):665-71. PubMed ID: 16416321
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electromyographic and force production characteristics of leg extensor muscles of elite weight lifters during isometric, concentric, and various stretch-shortening cycle exercises.
    Häkkinen K; Komi PV; Kauhanen H
    Int J Sports Med; 1986 Jun; 7(3):144-51. PubMed ID: 2942500
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of aging on the mechanical behavior of leg extensor muscles.
    Bosco C; Komi PV
    Eur J Appl Physiol Occup Physiol; 1980; 45(2-3):209-19. PubMed ID: 7193130
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contribution of the tendinous tissue to force enhancement during stretch-shortening cycle exercise depends on the prestretch and concentric phase intensities.
    Ishikawa M; Komi PV; Finni T; Kuitunen S
    J Electromyogr Kinesiol; 2006 Oct; 16(5):423-31. PubMed ID: 16275136
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fatigue during stretch-shortening cycle exercises. II. Changes in neuromuscular activation patterns of human skeletal muscle.
    Gollhofer A; Komi PV; Fujitsuka N; Miyashita M
    Int J Sports Med; 1987 Mar; 8 Suppl 1():38-47. PubMed ID: 3583519
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic contractility and efficiency impairments in stretch-shortening cycle are stretch-load-dependent after training-induced muscle damage.
    Váczi M; Rácz L; Hortobágyi T; Tihanyi J
    J Strength Cond Res; 2013 Aug; 27(8):2171-9. PubMed ID: 23207890
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Utilization of stored elastic energy in leg extensor muscles by men and women.
    Komi PV; Bosco C
    Med Sci Sports; 1978; 10(4):261-5. PubMed ID: 750844
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calf muscle moment, work and efficiency in level walking; role of series elasticity.
    Hof AL; Geelen BA; Van den Berg J
    J Biomech; 1983; 16(7):523-37. PubMed ID: 6619170
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The mechanics of sprint running.
    Cavagna GA; Komarek L; Mazzoleni S
    J Physiol; 1971 Sep; 217(3):709-21. PubMed ID: 5098087
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of different dropping intensities on fascicle and tendinous tissue behavior during stretch-shortening cycle exercise.
    Ishikawa M; Komi PV
    J Appl Physiol (1985); 2004 Mar; 96(3):848-52. PubMed ID: 14594857
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.