These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 36989943)

  • 1. Platinum-based combination nanomedicines for cancer therapy.
    Li Y; Lin W
    Curr Opin Chem Biol; 2023 Jun; 74():102290. PubMed ID: 36989943
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reappraisal of anticancer nanomedicine design criteria in three types of preclinical cancer models for better clinical translation.
    Luan X; Yuan H; Song Y; Hu H; Wen B; He M; Zhang H; Li Y; Li F; Shu P; Burnett JP; Truchan N; Palmisano M; Pai MP; Zhou S; Gao W; Sun D
    Biomaterials; 2021 Aug; 275():120910. PubMed ID: 34144373
    [TBL] [Abstract][Full Text] [Related]  

  • 3. What Went Wrong with Anticancer Nanomedicine Design and How to Make It Right.
    Sun D; Zhou S; Gao W
    ACS Nano; 2020 Oct; 14(10):12281-12290. PubMed ID: 33021091
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcytosis-enabled active extravasation of tumor nanomedicine.
    Zhou Q; Li J; Xiang J; Shao S; Zhou Z; Tang J; Shen Y
    Adv Drug Deliv Rev; 2022 Oct; 189():114480. PubMed ID: 35952830
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strategies to improve the EPR effect: A mechanistic perspective and clinical translation.
    Ikeda-Imafuku M; Wang LL; Rodrigues D; Shaha S; Zhao Z; Mitragotri S
    J Control Release; 2022 May; 345():512-536. PubMed ID: 35337939
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unraveling the role of Intralipid in suppressing off-target delivery and augmenting the therapeutic effects of anticancer nanomedicines.
    Islam R; Gao S; Islam W; Šubr V; Zhou JR; Yokomizo K; Etrych T; Maeda H; Fang J
    Acta Biomater; 2021 May; 126():372-383. PubMed ID: 33774199
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tumor extravasation and infiltration as barriers of nanomedicine for high efficacy: The current status and transcytosis strategy.
    Zhou Q; Dong C; Fan W; Jiang H; Xiang J; Qiu N; Piao Y; Xie T; Luo Y; Li Z; Liu F; Shen Y
    Biomaterials; 2020 May; 240():119902. PubMed ID: 32105817
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tumor Abnormality-Oriented Nanomedicine Design.
    Zhou Q; Xiang J; Qiu N; Wang Y; Piao Y; Shao S; Tang J; Zhou Z; Shen Y
    Chem Rev; 2023 Sep; 123(18):10920-10989. PubMed ID: 37713432
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Destruction of tumor vasculature by vascular disrupting agents in overcoming the limitation of EPR effect.
    Liu Z; Zhang Y; Shen N; Sun J; Tang Z; Chen X
    Adv Drug Deliv Rev; 2022 Apr; 183():114138. PubMed ID: 35143895
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Imaging-assisted anticancer nanotherapy.
    Dasgupta A; Biancacci I; Kiessling F; Lammers T
    Theranostics; 2020; 10(3):956-967. PubMed ID: 31938045
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The tumor EPR effect for cancer drug delivery: Current status, limitations, and alternatives.
    Sun R; Xiang J; Zhou Q; Piao Y; Tang J; Shao S; Zhou Z; Bae YH; Shen Y
    Adv Drug Deliv Rev; 2022 Dec; 191():114614. PubMed ID: 36347432
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tumor-Targeted Nanomedicine for Immunotherapy.
    Cabral H; Kinoh H; Kataoka K
    Acc Chem Res; 2020 Dec; 53(12):2765-2776. PubMed ID: 33161717
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulating tumor mechanics with nanomedicine for cancer therapy.
    Zhao Q; Chen J; Zhang Z; Xiao C; Zeng H; Xu C; Yang X; Li Z
    Biomater Sci; 2023 Jun; 11(13):4471-4489. PubMed ID: 37221958
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Boosting Nanomedicine Efficacy with Hyperbaric Oxygen Therapy.
    Wang X; Li S; Liu X; Wu X; Ye N; Yang X; Li Z
    Adv Exp Med Biol; 2021; 1295():77-95. PubMed ID: 33543456
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Challenging the fundamental conjectures in nanoparticle drug delivery for chemotherapy treatment of solid cancers.
    Yang J; Wang X; Wang B; Park K; Wooley K; Zhang S
    Adv Drug Deliv Rev; 2022 Nov; 190():114525. PubMed ID: 36100142
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced permeability and retention effect-focused tumor-targeted nanomedicines: latest trends, obstacles and future perspective.
    Shekhar S; Chauhan M; Sonali ; Yadav B; Dutt R; Hu L; Muthu MS; Singh RP
    Nanomedicine (Lond); 2022 Aug; 17(18):1213-1216. PubMed ID: 36136592
    [No Abstract]   [Full Text] [Related]  

  • 17. Survey of Clinical Translation of Cancer Nanomedicines-Lessons Learned from Successes and Failures.
    He H; Liu L; Morin EE; Liu M; Schwendeman A
    Acc Chem Res; 2019 Sep; 52(9):2445-2461. PubMed ID: 31424909
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hybrid nanoparticles for combination therapy of cancer.
    He C; Lu J; Lin W
    J Control Release; 2015 Dec; 219():224-236. PubMed ID: 26387745
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strategies of engineering nanomedicines for tumor retention.
    Qian X; Xu X; Wu Y; Wang J; Li J; Chen S; Wen J; Li Y; Zhang Z
    J Control Release; 2022 Jun; 346():193-211. PubMed ID: 35447297
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanomedicines for Reactive Oxygen Species Mediated Approach: An Emerging Paradigm for Cancer Treatment.
    Kwon S; Ko H; You DG; Kataoka K; Park JH
    Acc Chem Res; 2019 Jul; 52(7):1771-1782. PubMed ID: 31241894
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.