BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 36989951)

  • 21. Recycling experimental investigation on end of life photovoltaic panels by application of high voltage fragmentation.
    Song BP; Zhang MY; Fan Y; Jiang L; Kang J; Gou TT; Zhang CL; Yang N; Zhang GJ; Zhou X
    Waste Manag; 2020 Jan; 101():180-187. PubMed ID: 31622863
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Life Cycle Assessment of Solar Photovoltaic in India: A Circular Economy Approach.
    Prabhu VS; Shrivastava S; Mukhopadhyay K
    Circ Econ Sustain; 2022; 2(2):507-534. PubMed ID: 34888577
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Environmental impacts of recycling crystalline silicon (c-SI) and cadmium telluride (CDTE) solar panels.
    Maani T; Celik I; Heben MJ; Ellingson RJ; Apul D
    Sci Total Environ; 2020 Sep; 735():138827. PubMed ID: 32464407
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Prediction of photovoltaic waste generation in Canada using regression-based model.
    Romel M; Kabir G; Ng KTW
    Environ Sci Pollut Res Int; 2024 Feb; 31(6):8650-8665. PubMed ID: 38182949
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Challenges of metal recycling and an international covenant as possible instrument of a globally extended producer responsibility.
    Wilts H; Bringezu S; Bleischwitz R; Lucas R; Wittmer D
    Waste Manag Res; 2011 Sep; 29(9):902-10. PubMed ID: 21771872
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A critical review of the circular economy for lithium-ion batteries and photovoltaic modules - status, challenges, and opportunities.
    Heath GA; Ravikumar D; Hansen B; Kupets E
    J Air Waste Manag Assoc; 2022 Jun; 72(6):478-539. PubMed ID: 35687330
    [TBL] [Abstract][Full Text] [Related]  

  • 27. PV in the circular economy, a dynamic framework analyzing technology evolution and reliability impacts.
    Ovaitt S; Mirletz H; Seetharaman S; Barnes T
    iScience; 2022 Jan; 25(1):103488. PubMed ID: 34977498
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Waste management of printed wiring boards: a life cycle assessment of the metals recycling chain from liberation through refining.
    Xue M; Kendall A; Xu Z; Schoenung JM
    Environ Sci Technol; 2015 Jan; 49(2):940-7. PubMed ID: 25563893
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Examining nonlinear effects of socioecological drivers on urban solar energy development in China using machine learning and high-dimensional data.
    Zhao Y; Ge W; Sun Y; Qiao G; Zhu D; Ai H
    J Environ Manage; 2024 Jun; 360():121092. PubMed ID: 38733843
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cost-benefit analysis of waste photovoltaic module recycling in China.
    Liu C; Zhang Q; Wang H
    Waste Manag; 2020 Dec; 118():491-500. PubMed ID: 32979780
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Upcycling Silicon Photovoltaic Waste into Thermoelectrics.
    Cao J; Sim Y; Tan XY; Zheng J; Chien SW; Jia N; Chen K; Tay YB; Dong JF; Yang L; Ng HK; Liu H; Tan CKI; Xie G; Zhu Q; Li Z; Zhang G; Hu L; Zheng Y; Xu J; Yan Q; Loh XJ; Mathews N; Wu J; Suwardi A
    Adv Mater; 2022 May; 34(19):e2110518. PubMed ID: 35257424
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Challenges in legislation, recycling system and technical system of waste electrical and electronic equipment in China.
    Zhang S; Ding Y; Liu B; Pan D; Chang CC; Volinsky AA
    Waste Manag; 2015 Nov; 45():361-73. PubMed ID: 26059074
    [TBL] [Abstract][Full Text] [Related]  

  • 33. How does the photovoltaic industry contribute to China's carbon neutrality goal? Analysis of a system dynamics simulation.
    Zhang L; Du Q; Zhou D; Zhou P
    Sci Total Environ; 2022 Feb; 808():151868. PubMed ID: 34822897
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Globally sustainable manganese metal production and use.
    Hagelstein K
    J Environ Manage; 2009 Sep; 90(12):3736-40. PubMed ID: 19467569
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Challenges for critical raw material recovery from WEEE - The case study of gallium.
    Ueberschaar M; Otto SJ; Rotter VS
    Waste Manag; 2017 Feb; 60():534-545. PubMed ID: 28089397
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Supply and demand of some critical metals and present status of their recycling in WEEE.
    Zhang S; Ding Y; Liu B; Chang CC
    Waste Manag; 2017 Jul; 65():113-127. PubMed ID: 28412098
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Efficient and comprehensive recycling of valuable components from scrapped Si-based photovoltaic panels.
    Ding Y; He J; Zhang S; Jian J; Shi Z; Cao A
    Waste Manag; 2024 Mar; 175():183-190. PubMed ID: 38211472
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Forecasting quantities of critical raw materials in obsolete feature and smart phones in Greece: A path to circular economy.
    Kastanaki E; Giannis A
    J Environ Manage; 2022 Apr; 307():114566. PubMed ID: 35091243
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Systematic characterization of generation and management of e-waste in China.
    Duan H; Hu J; Tan Q; Liu L; Wang Y; Li J
    Environ Sci Pollut Res Int; 2016 Jan; 23(2):1929-43. PubMed ID: 26408118
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development potential of e-waste recycling industry in China.
    Li J; Yang J; Liu L
    Waste Manag Res; 2015 Jun; 33(6):533-42. PubMed ID: 25990983
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.