These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
409 related articles for article (PubMed ID: 36989954)
21. The application of deep learning in electrocardiogram: Where we came from and where we should go? Sun JY; Shen H; Qu Q; Sun W; Kong XQ Int J Cardiol; 2021 Aug; 337():71-78. PubMed ID: 34000355 [TBL] [Abstract][Full Text] [Related]
22. Pre-Processing techniques and artificial intelligence algorithms for electrocardiogram (ECG) signals analysis: A comprehensive review. Safdar MF; Nowak RM; Pałka P Comput Biol Med; 2024 Mar; 170():107908. PubMed ID: 38217973 [TBL] [Abstract][Full Text] [Related]
23. Detection of QRS complexes in electrocardiogram using support vector machine. Mehta SS; Lingayat NS J Med Eng Technol; 2008; 32(3):206-15. PubMed ID: 18432468 [TBL] [Abstract][Full Text] [Related]
24. Artificial Intelligence ECG Analysis in Patients with Short QT Syndrome to Predict Life-Threatening Arrhythmic Events. Pasero E; Gaita F; Randazzo V; Meynet P; Cannata S; Maury P; Giustetto C Sensors (Basel); 2023 Nov; 23(21):. PubMed ID: 37960599 [TBL] [Abstract][Full Text] [Related]
25. Artificial intelligence-enhanced electrocardiography for accurate diagnosis and management of cardiovascular diseases. Muzammil MA; Javid S; Afridi AK; Siddineni R; Shahabi M; Haseeb M; Fariha FNU; Kumar S; Zaveri S; Nashwan AJ J Electrocardiol; 2024; 83():30-40. PubMed ID: 38301492 [TBL] [Abstract][Full Text] [Related]
26. Opening the black box: interpretability of machine learning algorithms in electrocardiography. Bodini M; Rivolta MW; Sassi R Philos Trans A Math Phys Eng Sci; 2021 Dec; 379(2212):20200253. PubMed ID: 34689625 [TBL] [Abstract][Full Text] [Related]
27. Machine learning and the electrocardiogram over two decades: Time series and meta-analysis of the algorithms, evaluation metrics and applications. Rjoob K; Bond R; Finlay D; McGilligan V; Leslie SJ; Rababah A; Iftikhar A; Guldenring D; Knoery C; McShane A; Peace A; Macfarlane PW Artif Intell Med; 2022 Oct; 132():102381. PubMed ID: 36207087 [TBL] [Abstract][Full Text] [Related]
28. Machine learning models of 6-lead ECGs for the interpretation of left ventricular hypertrophy (LVH). Dwivedi T; Xue J; Treiman D; Dubey A; Albert D J Electrocardiol; 2023; 77():62-67. PubMed ID: 36641988 [TBL] [Abstract][Full Text] [Related]
29. Assessing and Mitigating Bias in Medical Artificial Intelligence: The Effects of Race and Ethnicity on a Deep Learning Model for ECG Analysis. Noseworthy PA; Attia ZI; Brewer LC; Hayes SN; Yao X; Kapa S; Friedman PA; Lopez-Jimenez F Circ Arrhythm Electrophysiol; 2020 Mar; 13(3):e007988. PubMed ID: 32064914 [TBL] [Abstract][Full Text] [Related]
30. Applications of Artificial Intelligence in Cardiology. The Future is Already Here. Dorado-Díaz PI; Sampedro-Gómez J; Vicente-Palacios V; Sánchez PL Rev Esp Cardiol (Engl Ed); 2019 Dec; 72(12):1065-1075. PubMed ID: 31611150 [TBL] [Abstract][Full Text] [Related]
31. Unlocking Hidden Risks: Harnessing Artificial Intelligence (AI) to Detect Subclinical Conditions from an Electrocardiogram (ECG). Posan E; Richie R J Insur Med; 2024 Jul; 51(2):64-76. PubMed ID: 39266002 [TBL] [Abstract][Full Text] [Related]
32. Artificial intelligence for detecting mitral regurgitation using electrocardiography. Kwon JM; Kim KH; Akkus Z; Jeon KH; Park J; Oh BH J Electrocardiol; 2020; 59():151-157. PubMed ID: 32146201 [TBL] [Abstract][Full Text] [Related]
34. Diagnostic accuracy of different ECG-based algorithms in wide QRS complex tachycardia: a systematic review and meta-analysis. Sun X; Teng Y; Mu S; Wang Y; Chen H BMJ Open; 2023 Jul; 13(7):e069273. PubMed ID: 37487685 [TBL] [Abstract][Full Text] [Related]
35. A comprehensive artificial intelligence-enabled electrocardiogram interpretation program. Kashou AH; Ko WY; Attia ZI; Cohen MS; Friedman PA; Noseworthy PA Cardiovasc Digit Health J; 2020; 1(2):62-70. PubMed ID: 35265877 [TBL] [Abstract][Full Text] [Related]
36. Comparing the performance of artificial intelligence and conventional diagnosis criteria for detecting left ventricular hypertrophy using electrocardiography. Kwon JM; Jeon KH; Kim HM; Kim MJ; Lim SM; Kim KH; Song PS; Park J; Choi RK; Oh BH Europace; 2020 Mar; 22(3):412-419. PubMed ID: 31800031 [TBL] [Abstract][Full Text] [Related]
37. Application of artificial intelligence techniques for automated detection of myocardial infarction: a review. Hassannataj Joloudari J; Mojrian S; Nodehi I; Mashmool A; Kiani Zadegan Z; Khanjani Shirkharkolaie S; Alizadehsani R; Tamadon T; Khosravi S; Akbari Kohnehshari M; Hassannatajjeloudari E; Sharifrazi D; Mosavi A; Loh HW; Tan RS; Acharya UR Physiol Meas; 2022 Aug; 43(8):. PubMed ID: 35803247 [No Abstract] [Full Text] [Related]
38. Deep learning for comprehensive ECG annotation. Teplitzky BA; McRoberts M; Ghanbari H Heart Rhythm; 2020 May; 17(5 Pt B):881-888. PubMed ID: 32354454 [TBL] [Abstract][Full Text] [Related]
39. Integrating artificial intelligence, machine learning, and deep learning approaches into remediation of contaminated sites: A review. Janga JK; Reddy KR; Raviteja KVNS Chemosphere; 2023 Dec; 345():140476. PubMed ID: 37866497 [TBL] [Abstract][Full Text] [Related]
40. Introduction to artificial intelligence and deep learning using interactive electronic programming notebooks. Menke J; Homberg S; Koch O Arch Pharm (Weinheim); 2023 Jul; 356(7):e2200628. PubMed ID: 37066712 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]