These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 36989968)

  • 1. Young adults use whole-body feedback and ankle proprioception to perceive small locomotor disturbances.
    Liss DJ; Carey HD; Allen JL
    Hum Mov Sci; 2023 Jun; 89():103084. PubMed ID: 36989968
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Young adults perceive small disturbances to their walking balance even when distracted.
    Liss DJ; Carey HD; Yakovenko S; Allen JL
    Gait Posture; 2022 Jan; 91():198-204. PubMed ID: 34740056
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of perturbation timing on recovering whole-body angular momentum during very slow walking.
    van Mierlo M; Abma M; Vlutters M; van Asseldonk EHF; van der Kooij H
    Hum Mov Sci; 2023 Oct; 91():103138. PubMed ID: 37573800
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative evaluation of the major determinants of human gait.
    Lin YC; Gfoehler M; Pandy MG
    J Biomech; 2014 Apr; 47(6):1324-31. PubMed ID: 24582352
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differences in coding provided by proprioceptive and vestibular sensory signals may contribute to lateral instability in vestibular loss subjects.
    Allum JH; Oude Nijhuis LB; Carpenter MG
    Exp Brain Res; 2008 Jan; 184(3):391-410. PubMed ID: 17849108
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Muscle contributions to whole-body sagittal plane angular momentum during walking.
    Neptune RR; McGowan CP
    J Biomech; 2011 Jan; 44(1):6-12. PubMed ID: 20833396
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recovery from sagittal-plane whole body angular momentum perturbations during walking.
    van Mierlo M; Ambrosius JI; Vlutters M; van Asseldonk EHF; van der Kooij H
    J Biomech; 2022 Aug; 141():111169. PubMed ID: 35738058
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development and reliability of a measure evaluating dynamic proprioception during walking with a robotized ankle-foot orthosis, and its relation to dynamic postural control.
    Fournier Belley A; Bouffard J; Brochu K; Mercier C; Roy JS; Bouyer L
    Gait Posture; 2016 Sep; 49():213-218. PubMed ID: 27450673
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of human ankle muscle vibration on posture and balance during adaptive locomotion.
    Sorensen KL; Hollands MA; Patla E
    Exp Brain Res; 2002 Mar; 143(1):24-34. PubMed ID: 11907687
    [TBL] [Abstract][Full Text] [Related]  

  • 10. EquiTest modification with shank and hip angle measurements: differences with age among normal subjects.
    Speers RA; Shepard NT; Kuo AD
    J Vestib Res; 1999; 9(6):435-44. PubMed ID: 10639028
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of various arm and walking conditions on postural dynamic stability when recovering from a trip perturbation.
    Gholizadeh H; Hill A; Nantel J
    Gait Posture; 2020 Feb; 76():284-289. PubMed ID: 31884255
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimation of sagittal-plane whole-body angular momentum during perturbed and unperturbed gait using simplified body models.
    Zhang J; van Mierlo M; Veltink PH; van Asseldonk EHF
    Hum Mov Sci; 2024 Feb; 93():103179. PubMed ID: 38244350
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aging effects on leg joint variability during walking with balance perturbations.
    Qiao M; Feld JA; Franz JR
    Gait Posture; 2018 May; 62():27-33. PubMed ID: 29510323
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increased use of stepping strategy in response to medio-lateral perturbations in the elderly relates to altered reactive tibialis anterior activity.
    Afschrift M; van Deursen R; De Groote F; Jonkers I
    Gait Posture; 2019 Feb; 68():575-582. PubMed ID: 30654320
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recovering whole-body angular momentum and margin of stability after treadmill-induced perturbations during sloped walking in healthy young adults.
    Shokouhi S; Sritharan P; Lee PV
    Sci Rep; 2024 Feb; 14(1):4421. PubMed ID: 38388724
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of the most common gait perturbations on the compensatory limb's ankle, knee, and hip moments during the first stepping response.
    Yoo D; Seo KH; Lee BC
    Gait Posture; 2019 Jun; 71():98-104. PubMed ID: 31031225
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Baseline skin information from the foot dorsum is used to control lower limb kinematics during level walking.
    Howe EE; Toth AJ; Vallis LA; Bent LR
    Exp Brain Res; 2015 Aug; 233(8):2477-87. PubMed ID: 26019009
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of the hip motion on the body kinematics in the sagittal plane during human quiet standing.
    Sasagawa S; Ushiyama J; Kouzaki M; Kanehisa H
    Neurosci Lett; 2009 Jan; 450(1):27-31. PubMed ID: 19027828
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ankle muscle responses during perturbed walking with blocked ankle joints.
    Vlutters M; van Asseldonk EHF; van der Kooij H
    J Neurophysiol; 2019 May; 121(5):1711-1717. PubMed ID: 30864874
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visual guidance of landing behaviour when stepping down to a new level.
    Buckley JG; MacLellan MJ; Tucker MW; Scally AJ; Bennett SJ
    Exp Brain Res; 2008 Jan; 184(2):223-32. PubMed ID: 17726604
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.