These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 36990002)

  • 1. CHARLES: A C++ fixed-point library for Photonic-Aware Neural Networks.
    Paolini E; De Marinis L; Maggiani L; Cococcioni M; Andriolli N
    Neural Netw; 2023 May; 162():531-540. PubMed ID: 36990002
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantization-aware training for low precision photonic neural networks.
    Kirtas M; Oikonomou A; Passalis N; Mourgias-Alexandris G; Moralis-Pegios M; Pleros N; Tefas A
    Neural Netw; 2022 Nov; 155():561-573. PubMed ID: 36191452
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimal Architecture of Floating-Point Arithmetic for Neural Network Training Processors.
    Junaid M; Arslan S; Lee T; Kim H
    Sensors (Basel); 2022 Feb; 22(3):. PubMed ID: 35161975
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Channel response-aware photonic neural network accelerators for high-speed inference through bandwidth-limited optics.
    Mourgias-Alexandris G; Moralis-Pegios M; Tsakyridis A; Passalis N; Kirtas M; Tefas A; Rutirawut T; Gardes FY; Pleros N
    Opt Express; 2022 Mar; 30(7):10664-10671. PubMed ID: 35473027
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantization-Aware NN Layers with High-throughput FPGA Implementation for Edge AI.
    Pistellato M; Bergamasco F; Bigaglia G; Gasparetto A; Albarelli A; Boschetti M; Passerone R
    Sensors (Basel); 2023 May; 23(10):. PubMed ID: 37430583
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mixed-precision weights network for field-programmable gate array.
    Fuengfusin N; Tamukoh H
    PLoS One; 2021; 16(5):e0251329. PubMed ID: 33970965
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hybrid Precision Floating-Point (HPFP) Selection to Optimize Hardware-Constrained Accelerator for CNN Training.
    Junaid M; Aliev H; Park S; Kim H; Yoo H; Sim S
    Sensors (Basel); 2024 Mar; 24(7):. PubMed ID: 38610356
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Post-training Quantization Method for the Design of Fixed-Point-Based FPGA/ASIC Hardware Accelerators for LSTM/GRU Algorithms.
    Rapuano E; Pacini T; Fanucci L
    Comput Intell Neurosci; 2022; 2022():9485933. PubMed ID: 35602644
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expressive power of ReLU and step networks under floating-point operations.
    Park Y; Hwang G; Lee W; Park S
    Neural Netw; 2024 Jul; 175():106297. PubMed ID: 38643619
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of Hardware Accelerators for Optimized and Quantized Neural Networks to Detect Atrial Fibrillation in Patch ECG Device with RISC-V.
    Hoyer I; Utz A; Lüdecke A; Kappert H; Rohr M; Antink CH; Seidl K
    Sensors (Basel); 2023 Mar; 23(5):. PubMed ID: 36904905
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pre-Computing Batch Normalisation Parameters for Edge Devices on a Binarized Neural Network.
    Phipps N; Shang JJ; Teo TH; Wey IC
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420727
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantization and Deployment of Deep Neural Networks on Microcontrollers.
    Novac PE; Boukli Hacene G; Pegatoquet A; Miramond B; Gripon V
    Sensors (Basel); 2021 Apr; 21(9):. PubMed ID: 33922868
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neural Coding in Spiking Neural Networks: A Comparative Study for Robust Neuromorphic Systems.
    Guo W; Fouda ME; Eltawil AM; Salama KN
    Front Neurosci; 2021; 15():638474. PubMed ID: 33746705
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lean Neural Networks for Autonomous Radar Waveform Design.
    Baietto A; Boubin J; Farr P; Bihl TJ; Jones AM; Stewart C
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214218
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Convolutional Neural Networks Quantization with Double-Stage Squeeze-and-Threshold.
    Wu B; Waschneck B; Mayr CG
    Int J Neural Syst; 2022 Dec; 32(12):2250051. PubMed ID: 36164719
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical stability of DeepGOPlus inference.
    Gonzalez Pepe I; Chatelain Y; Kiar G; Glatard T
    PLoS One; 2024; 19(1):e0296725. PubMed ID: 38285635
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Training memristor-based multilayer neuromorphic networks with SGD, momentum and adaptive learning rates.
    Yan Z; Chen J; Hu R; Huang T; Chen Y; Wen S
    Neural Netw; 2020 Aug; 128():142-149. PubMed ID: 32446191
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Event-driven implementation of deep spiking convolutional neural networks for supervised classification using the SpiNNaker neuromorphic platform.
    Patiño-Saucedo A; Rostro-Gonzalez H; Serrano-Gotarredona T; Linares-Barranco B
    Neural Netw; 2020 Jan; 121():319-328. PubMed ID: 31590013
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Cost-Efficient High-Speed VLSI Architecture for Spiking Convolutional Neural Network Inference Using Time-Step Binary Spike Maps.
    Zhang L; Yang J; Shi C; Lin Y; He W; Zhou X; Yang X; Liu L; Wu N
    Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577214
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Early Termination Based Training Acceleration for an Energy-Efficient SNN Processor Design.
    Choi S; Lew D; Park J
    IEEE Trans Biomed Circuits Syst; 2022 Jun; 16(3):442-455. PubMed ID: 35687615
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.