These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 36990103)
1. Quasi-periodic scattering of topological edge states induced by the vacancies in chloridized gallium bismuthide nanoribbons. Li H; Li Z J Phys Condens Matter; 2023 Apr; 35(25):. PubMed ID: 36990103 [TBL] [Abstract][Full Text] [Related]
2. Giant topological nontrivial band gaps in chloridized gallium bismuthide. Li L; Zhang X; Chen X; Zhao M Nano Lett; 2015 Feb; 15(2):1296-301. PubMed ID: 25625786 [TBL] [Abstract][Full Text] [Related]
3. The photogalvanic effect induced by quantum spin Hall edge states from first-principles calculations. Yang Y; Zhang L; Zheng X; Chen J; Xiao L; Jia S; Zhang L Phys Chem Chem Phys; 2023 Jun; 25(24):16363-16370. PubMed ID: 37289059 [TBL] [Abstract][Full Text] [Related]
4. Chiral edge transport along domain walls in magnetic topological insulator nanoribbons. Pournaghavi N; Canali CM J Phys Condens Matter; 2024 Jul; 36(40):. PubMed ID: 38941992 [TBL] [Abstract][Full Text] [Related]
5. Quantum phase transitions and topological proximity effects in graphene nanoribbon heterostructures. Zhang G; Li X; Wu G; Wang J; Culcer D; Kaxiras E; Zhang Z Nanoscale; 2014 Mar; 6(6):3259-67. PubMed ID: 24509485 [TBL] [Abstract][Full Text] [Related]
6. Helical edge states and edge-state transport in strained armchair graphene nanoribbons. Liu ZF; Wu QP; Chen AX; Xiao XB; Liu NH; Miao GX Sci Rep; 2017 Aug; 7(1):8854. PubMed ID: 28821764 [TBL] [Abstract][Full Text] [Related]
7. Evidence of a room-temperature quantum spin Hall edge state in a higher-order topological insulator. Shumiya N; Hossain MS; Yin JX; Wang Z; Litskevich M; Yoon C; Li Y; Yang Y; Jiang YX; Cheng G; Lin YC; Zhang Q; Cheng ZJ; Cochran TA; Multer D; Yang XP; Casas B; Chang TR; Neupert T; Yuan Z; Jia S; Lin H; Yao N; Balicas L; Zhang F; Yao Y; Hasan MZ Nat Mater; 2022 Oct; 21(10):1111-1115. PubMed ID: 35835819 [TBL] [Abstract][Full Text] [Related]
8. Dual Dirac points and odd-even oscillated energy gap in zigzag chlorinated stanene nanoribbon. Liu X; Li Z J Phys Condens Matter; 2021 Jun; 33(32):. PubMed ID: 34077919 [TBL] [Abstract][Full Text] [Related]
9. The Impact of Electron Phonon Scattering, Finite Size and Lateral Electric Field on Transport Properties of Topological Insulators: A First Principles Quantum Transport Study. Akhoundi E; Houssa M; Afzalian A Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36837233 [TBL] [Abstract][Full Text] [Related]
10. Epitaxial Growth of Quasi-One-Dimensional Bismuth-Halide Chains with Atomically Sharp Topological Non-Trivial Edge States. Zhuang J; Li J; Liu Y; Mu D; Yang M; Liu Y; Zhou W; Hao W; Zhong J; Du Y ACS Nano; 2021 Sep; 15(9):14850-14857. PubMed ID: 34583466 [TBL] [Abstract][Full Text] [Related]
11. Phase transition and topological transistors based on monolayer Na Shi B; Tang H; Song Z; Li J; Xu L; Liu S; Yang J; Sun X; Quhe R; Yang J; Lu J Nanoscale; 2021 Sep; 13(35):15048-15057. PubMed ID: 34533149 [TBL] [Abstract][Full Text] [Related]
12. Zigzag nanoribbons of two-dimensional silicene-like crystals: magnetic, topological and thermoelectric properties. Wierzbicki M; BarnaĆ J; Swirkowicz R J Phys Condens Matter; 2015 Dec; 27(48):485301. PubMed ID: 26565114 [TBL] [Abstract][Full Text] [Related]
13. Penetration depth and nonlocal manipulation of quantum spin hall edge states in chiral honeycomb nanoribbons. Xu Y; Uddin S; Wang J; Wu J; Liu JF Sci Rep; 2017 Aug; 7(1):7578. PubMed ID: 28790421 [TBL] [Abstract][Full Text] [Related]
14. Manipulating surface states in topological insulator nanoribbons. Xiu F; He L; Wang Y; Cheng L; Chang LT; Lang M; Huang G; Kou X; Zhou Y; Jiang X; Chen Z; Zou J; Shailos A; Wang KL Nat Nanotechnol; 2011 Apr; 6(4):216-21. PubMed ID: 21317891 [TBL] [Abstract][Full Text] [Related]
15. Tunable Electronic Properties of Lateral Monolayer Transition Metal Dichalcogenide Superlattice Nanoribbons. Wang J; Srivastava GP Nanomaterials (Basel); 2021 Feb; 11(2):. PubMed ID: 33669836 [TBL] [Abstract][Full Text] [Related]
16. Effect of molybdenum disulfide nanoribbon on quantum transport of graphene. Gao G; Li Z; Chen M; Xie Y; Wang Y J Phys Condens Matter; 2017 Nov; 29(43):435001. PubMed ID: 28829340 [TBL] [Abstract][Full Text] [Related]
17. Electric-field-controlled electronic structures and quantum transport in monolayer InSe nanoribbons. Ye Q; Tang S; Du Y; Liu Z; Wu Q; Xiao X J Phys Condens Matter; 2024 Jun; 36(36):. PubMed ID: 38830373 [TBL] [Abstract][Full Text] [Related]
18. Topological incommensurate magnetization plateaus in quasi-periodic quantum spin chains. Hu HP; Cheng C; Luo HG; Chen S Sci Rep; 2015 Feb; 5():8433. PubMed ID: 25678145 [TBL] [Abstract][Full Text] [Related]
19. Electronic Structure and I-V Characteristics of InSe Nanoribbons. Yao AL; Wang XF; Liu YS; Sun YN Nanoscale Res Lett; 2018 Apr; 13(1):107. PubMed ID: 29671093 [TBL] [Abstract][Full Text] [Related]
20. Aharonov-Bohm interference in topological insulator nanoribbons. Peng H; Lai K; Kong D; Meister S; Chen Y; Qi XL; Zhang SC; Shen ZX; Cui Y Nat Mater; 2010 Mar; 9(3):225-9. PubMed ID: 20010826 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]