These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 36990198)

  • 1. Loss of Sirt1 promotes exosome secretion from podocytes by inhibiting lysosomal acidification in diabetic nephropathy.
    Ding L; Li ZL; Zhou Y; Liu NC; Liu SS; Zhang XJ; Liu CC; Zhang DJ; Wang GH; Ma RX
    Mol Cell Endocrinol; 2023 Jun; 568-569():111913. PubMed ID: 36990198
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of p53/miR-34a/SIRT1 axis ameliorates podocyte injury in diabetic nephropathy.
    Liang Y; Liu H; Zhu J; Song N; Lu Z; Fang Y; Teng J; Dai Y; Ding X
    Biochem Biophys Res Commun; 2021 Jun; 559():48-55. PubMed ID: 33932899
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrated Network Pharmacology and Cellular Assay to Explore the Mechanisms of Selenized Tripterine Phytosomes (Se@Tri-PTs) Alleviating Podocyte Injury in Diabetic Nephropathy.
    Zhu S; Liu Q; Chang Y; Luo C; Zhang X; Sun S
    Curr Pharm Des; 2023; 29(38):3073-3086. PubMed ID: 37961864
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Down-regulation of Risa improves podocyte injury by enhancing autophagy in diabetic nephropathy.
    Su PP; Liu DW; Zhou SJ; Chen H; Wu XM; Liu ZS
    Mil Med Res; 2022 May; 9(1):23. PubMed ID: 35614465
    [TBL] [Abstract][Full Text] [Related]  

  • 5. TangShenWeiNing Formula Prevents Diabetic Nephropathy by Protecting Podocytes Through the SIRT1/HIF-1α Pathway.
    Chang J; Zheng J; Gao X; Dong H; Yu H; Huang M; Sun Z; Feng X
    Front Endocrinol (Lausanne); 2022; 13():888611. PubMed ID: 35721758
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Celastrol attenuates diabetic nephropathy by upregulating SIRT1-mediated inhibition of EZH2related wnt/β-catenin signaling.
    Tang Y; Wan F; Tang X; Lin Y; Zhang H; Cao J; Yang R
    Int Immunopharmacol; 2023 Sep; 122():110584. PubMed ID: 37454630
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SIRT1: Mechanism and Protective Effect in Diabetic Nephropathy.
    Ji J; Tao P; Wang Q; Li L; Xu Y
    Endocr Metab Immune Disord Drug Targets; 2021; 21(5):835-842. PubMed ID: 33121427
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protective effect of the tunneling nanotube-TNFAIP2/M-sec system on podocyte autophagy in diabetic nephropathy.
    Barutta F; Bellini S; Kimura S; Hase K; Corbetta B; Corbelli A; Fiordaliso F; Bruno S; Biancone L; Barreca A; Papotti MG; Hirsh E; Martini M; Gambino R; Durazzo M; Ohno H; Gruden G
    Autophagy; 2023 Feb; 19(2):505-524. PubMed ID: 35659195
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of miRNA-155 Alleviates High Glucose-Induced Podocyte Inflammation by Targeting SIRT1 in Diabetic Mice.
    Wang X; Gao Y; Yi W; Qiao Y; Hu H; Wang Y; Hu Y; Wu S; Sun H; Zhang T
    J Diabetes Res; 2021; 2021():5597394. PubMed ID: 33748285
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cdk5-Mediated Phosphorylation of Sirt1 Contributes to Podocyte Mitochondrial Dysfunction in Diabetic Nephropathy.
    Wang S; Yang Y; He X; Yang L; Wang J; Xia S; Liu D; Liu S; Yang L; Liu W; Duan H
    Antioxid Redox Signal; 2021 Jan; 34(3):171-190. PubMed ID: 32660255
    [No Abstract]   [Full Text] [Related]  

  • 11. Long noncoding RNA SNHG5 promotes podocyte injury via the microRNA-26a-5p/TRPC6 pathway in diabetic nephropathy.
    Zhou Y; Li ZL; Ding L; Zhang XJ; Liu NC; Liu SS; Wang YF; Ma RX
    J Biol Chem; 2022 Dec; 298(12):102605. PubMed ID: 36257404
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Communication from Tubular Epithelial Cells to Podocytes through Sirt1 and Nicotinic Acid Metabolism.
    Hasegawa K; Wakino S; Sakamaki Y; Muraoka H; Umino H; Minakuchi H; Yoshifuji A; Naitoh M; Shinozuka K; Futatsugi K; Urai H; Kanda T; Tokuyama H; Hayashi K; Itoh H
    Curr Hypertens Rev; 2016; 12(2):95-104. PubMed ID: 26931474
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MiR-138 plays an important role in diabetic nephropathy through SIRT1-p38-TTP regulatory axis.
    Liu F; Guo J; Qiao Y; Pan S; Duan J; Liu D; Liu Z
    J Cell Physiol; 2021 Sep; 236(9):6607-6618. PubMed ID: 33843045
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PGRN acts as a novel regulator of mitochondrial homeostasis by facilitating mitophagy and mitochondrial biogenesis to prevent podocyte injury in diabetic nephropathy.
    Zhou D; Zhou M; Wang Z; Fu Y; Jia M; Wang X; Liu M; Zhang Y; Sun Y; Lu Y; Tang W; Yi F
    Cell Death Dis; 2019 Jul; 10(7):524. PubMed ID: 31285425
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Involvement of Elf3 on Smad3 activation-dependent injuries in podocytes and excretion of urinary exosome in diabetic nephropathy.
    Sakurai A; Ono H; Ochi A; Matsuura M; Yoshimoto S; Kishi S; Murakami T; Tominaga T; Nagai K; Abe H; Doi T
    PLoS One; 2019; 14(5):e0216788. PubMed ID: 31150422
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exosome secreted from adipose-derived stem cells attenuates diabetic nephropathy by promoting autophagy flux and inhibiting apoptosis in podocyte.
    Jin J; Shi Y; Gong J; Zhao L; Li Y; He Q; Huang H
    Stem Cell Res Ther; 2019 Mar; 10(1):95. PubMed ID: 30876481
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Yishen capsule promotes podocyte autophagy through regulating SIRT1/NF-κB signaling pathway to improve diabetic nephropathy.
    Liu Y; Liu W; Zhang Z; Hu Y; Zhang X; Sun Y; Lei Q; Sun D; Liu T; Fan Y; Li H; Ding W; Fang J
    Ren Fail; 2021 Dec; 43(1):128-140. PubMed ID: 33427556
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exosomal microRNA-16-5p from human urine-derived stem cells ameliorates diabetic nephropathy through protection of podocyte.
    Duan YR; Chen BP; Chen F; Yang SX; Zhu CY; Ma YL; Li Y; Shi J
    J Cell Mol Med; 2021 Dec; 25(23):10798-10813. PubMed ID: 31568645
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of lysosomal TRPML1 channel activity and exosome release by acid ceramidase in mouse podocytes.
    Li G; Huang D; Hong J; Bhat OM; Yuan X; Li PL
    Am J Physiol Cell Physiol; 2019 Sep; 317(3):C481-C491. PubMed ID: 31268777
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Faster lipid β-oxidation rate by acetyl-CoA carboxylase 2 inhibition alleviates high-glucose-induced insulin resistance via SIRT1/PGC-1α in human podocytes.
    Wang Q; Zhao B; Zhang J; Sun J; Wang S; Zhang X; Xu Y; Wang R
    J Biochem Mol Toxicol; 2021 Jul; 35(7):e22797. PubMed ID: 33957017
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.