BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 36990910)

  • 1. Increased muscle responses to balance perturbations in children with cerebral palsy can be explained by increased sensitivity to center of mass movement.
    Willaert J; Martino G; Desloovere K; Van Campenhout A; Ting LH; De Groote F
    Gait Posture; 2024 Jan; 107():121-129. PubMed ID: 36990910
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combined translational and rotational perturbations of standing balance reveal contributions of reduced reciprocal inhibition to balance impairments in children with cerebral palsy.
    Willaert J; Desloovere K; Van Campenhout A; Ting LH; De Groote F
    PLoS Comput Biol; 2024 Jun; 20(6):e1012209. PubMed ID: 38870205
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A feedback model reproduces muscle activity during human postural responses to support-surface translations.
    Welch TD; Ting LH
    J Neurophysiol; 2008 Feb; 99(2):1032-8. PubMed ID: 18094102
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinematics and postural muscular activity during continuous oscillating platform movement in children and adolescents with cerebral palsy.
    Mills R; Levac D; Sveistrup H
    Gait Posture; 2018 Oct; 66():13-20. PubMed ID: 30138742
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A cross sectional study investigating dynamic balance when stepping to targets in children with cerebral palsy compared to typically developing children.
    Rapson R; Latour JM; Carter B; Pitsouni V; Marsden JF
    Gait Posture; 2023 Mar; 101():154-159. PubMed ID: 36842256
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatio-temporal separation of roll and pitch balance-correcting commands in humans.
    Grüneberg C; Duysens J; Honegger F; Allum JH
    J Neurophysiol; 2005 Nov; 94(5):3143-58. PubMed ID: 16033938
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Postural mechanisms in moderate-to-severe cerebral palsy.
    Goodworth A; Saavedra S
    J Neurophysiol; 2021 May; 125(5):1698-1719. PubMed ID: 33788612
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sensorimotor feedback based on task-relevant error robustly predicts temporal recruitment and multidirectional tuning of muscle synergies.
    Safavynia SA; Ting LH
    J Neurophysiol; 2013 Jan; 109(1):31-45. PubMed ID: 23100133
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-latency muscle activity reflects continuous, delayed sensorimotor feedback of task-level and not joint-level error.
    Safavynia SA; Ting LH
    J Neurophysiol; 2013 Sep; 110(6):1278-90. PubMed ID: 23803325
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparing joint kinematics and center of mass acceleration as feedback for control of standing balance by functional neuromuscular stimulation.
    Nataraj R; Audu ML; Triolo RJ
    J Neuroeng Rehabil; 2012 May; 9():25. PubMed ID: 22559852
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A feedback model explains the differential scaling of human postural responses to perturbation acceleration and velocity.
    Welch TD; Ting LH
    J Neurophysiol; 2009 Jun; 101(6):3294-309. PubMed ID: 19357335
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The dynamic balance of the children with cerebral palsy and typical developing during gait. Part I: Spatial relationship between COM and COP trajectories.
    Hsue BJ; Miller F; Su FC
    Gait Posture; 2009 Apr; 29(3):465-70. PubMed ID: 19111469
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Task-level feedback can explain temporal recruitment of spatially fixed muscle synergies throughout postural perturbations.
    Safavynia SA; Ting LH
    J Neurophysiol; 2012 Jan; 107(1):159-77. PubMed ID: 21957219
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Common muscle synergies for control of center of mass and force in nonstepping and stepping postural behaviors.
    Chvatal SA; Torres-Oviedo G; Safavynia SA; Ting LH
    J Neurophysiol; 2011 Aug; 106(2):999-1015. PubMed ID: 21653725
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impaired postural control of axial segments in children with cerebral palsy.
    Pierret J; Caudron S; Paysant J; Beyaert C
    Gait Posture; 2021 May; 86():266-272. PubMed ID: 33819768
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Children with cerebral palsy exhibit greater and more regular postural sway than typically developing children.
    Donker SF; Ledebt A; Roerdink M; Savelsbergh GJ; Beek PJ
    Exp Brain Res; 2008 Jan; 184(3):363-70. PubMed ID: 17909773
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Similar sensorimotor transformations control balance during standing and walking.
    Afschrift M; De Groote F; Jonkers I
    PLoS Comput Biol; 2021 Jun; 17(6):e1008369. PubMed ID: 34170903
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Head stability during quiet sitting in children with cerebral palsy: effect of vision and trunk support.
    Saavedra S; Woollacott M; van Donkelaar P
    Exp Brain Res; 2010 Feb; 201(1):13-23. PubMed ID: 19756550
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Postural orientation during standing in children with bilateral cerebral palsy.
    Lidbeck CM; Gutierrez-Farewik EM; Broström E; Bartonek Å
    Pediatr Phys Ther; 2014; 26(2):223-9. PubMed ID: 24675124
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The capacity to adapt to changing balance threats: a comparison of children with cerebral palsy and typically developing children.
    Burtner PA; Woollacott MH; Craft GL; Roncesvalles MN
    Dev Neurorehabil; 2007; 10(3):249-60. PubMed ID: 17564865
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.