These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 36990910)

  • 1. Increased muscle responses to balance perturbations in children with cerebral palsy can be explained by increased sensitivity to center of mass movement.
    Willaert J; Martino G; Desloovere K; Van Campenhout A; Ting LH; De Groote F
    Gait Posture; 2024 Jan; 107():121-129. PubMed ID: 36990910
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combined translational and rotational perturbations of standing balance reveal contributions of reduced reciprocal inhibition to balance impairments in children with cerebral palsy.
    Willaert J; Desloovere K; Van Campenhout A; Ting LH; De Groote F
    PLoS Comput Biol; 2024 Jun; 20(6):e1012209. PubMed ID: 38870205
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A feedback model reproduces muscle activity during human postural responses to support-surface translations.
    Welch TD; Ting LH
    J Neurophysiol; 2008 Feb; 99(2):1032-8. PubMed ID: 18094102
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinematics and postural muscular activity during continuous oscillating platform movement in children and adolescents with cerebral palsy.
    Mills R; Levac D; Sveistrup H
    Gait Posture; 2018 Oct; 66():13-20. PubMed ID: 30138742
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A cross sectional study investigating dynamic balance when stepping to targets in children with cerebral palsy compared to typically developing children.
    Rapson R; Latour JM; Carter B; Pitsouni V; Marsden JF
    Gait Posture; 2023 Mar; 101():154-159. PubMed ID: 36842256
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatio-temporal separation of roll and pitch balance-correcting commands in humans.
    Grüneberg C; Duysens J; Honegger F; Allum JH
    J Neurophysiol; 2005 Nov; 94(5):3143-58. PubMed ID: 16033938
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Postural mechanisms in moderate-to-severe cerebral palsy.
    Goodworth A; Saavedra S
    J Neurophysiol; 2021 May; 125(5):1698-1719. PubMed ID: 33788612
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sensorimotor feedback based on task-relevant error robustly predicts temporal recruitment and multidirectional tuning of muscle synergies.
    Safavynia SA; Ting LH
    J Neurophysiol; 2013 Jan; 109(1):31-45. PubMed ID: 23100133
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-latency muscle activity reflects continuous, delayed sensorimotor feedback of task-level and not joint-level error.
    Safavynia SA; Ting LH
    J Neurophysiol; 2013 Sep; 110(6):1278-90. PubMed ID: 23803325
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparing joint kinematics and center of mass acceleration as feedback for control of standing balance by functional neuromuscular stimulation.
    Nataraj R; Audu ML; Triolo RJ
    J Neuroeng Rehabil; 2012 May; 9():25. PubMed ID: 22559852
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A feedback model explains the differential scaling of human postural responses to perturbation acceleration and velocity.
    Welch TD; Ting LH
    J Neurophysiol; 2009 Jun; 101(6):3294-309. PubMed ID: 19357335
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The dynamic balance of the children with cerebral palsy and typical developing during gait. Part I: Spatial relationship between COM and COP trajectories.
    Hsue BJ; Miller F; Su FC
    Gait Posture; 2009 Apr; 29(3):465-70. PubMed ID: 19111469
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Task-level feedback can explain temporal recruitment of spatially fixed muscle synergies throughout postural perturbations.
    Safavynia SA; Ting LH
    J Neurophysiol; 2012 Jan; 107(1):159-77. PubMed ID: 21957219
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Center of mass states render multi-joint torques throughout standing balance recovery.
    Jakubowski KL; Martino G; Beck ON; Sawicki GS; Ting LH
    bioRxiv; 2024 Aug; ():. PubMed ID: 39229207
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Common muscle synergies for control of center of mass and force in nonstepping and stepping postural behaviors.
    Chvatal SA; Torres-Oviedo G; Safavynia SA; Ting LH
    J Neurophysiol; 2011 Aug; 106(2):999-1015. PubMed ID: 21653725
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impaired postural control of axial segments in children with cerebral palsy.
    Pierret J; Caudron S; Paysant J; Beyaert C
    Gait Posture; 2021 May; 86():266-272. PubMed ID: 33819768
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Children with cerebral palsy exhibit greater and more regular postural sway than typically developing children.
    Donker SF; Ledebt A; Roerdink M; Savelsbergh GJ; Beek PJ
    Exp Brain Res; 2008 Jan; 184(3):363-70. PubMed ID: 17909773
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Similar sensorimotor transformations control balance during standing and walking.
    Afschrift M; De Groote F; Jonkers I
    PLoS Comput Biol; 2021 Jun; 17(6):e1008369. PubMed ID: 34170903
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Head stability during quiet sitting in children with cerebral palsy: effect of vision and trunk support.
    Saavedra S; Woollacott M; van Donkelaar P
    Exp Brain Res; 2010 Feb; 201(1):13-23. PubMed ID: 19756550
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The capacity to adapt to changing balance threats: a comparison of children with cerebral palsy and typically developing children.
    Burtner PA; Woollacott MH; Craft GL; Roncesvalles MN
    Dev Neurorehabil; 2007; 10(3):249-60. PubMed ID: 17564865
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.