These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 36991234)

  • 1. Macrophage Anti-inflammatory Behaviour in a Multiphase Model of Atherosclerotic Plaque Development.
    Ahmed IU; Byrne HM; Myerscough MR
    Bull Math Biol; 2023 Mar; 85(5):37. PubMed ID: 36991234
    [TBL] [Abstract][Full Text] [Related]  

  • 2. HDL and plaque regression in a multiphase model of early atherosclerosis.
    Ahmed IU; Myerscough MR
    Math Biosci; 2024 Jul; 373():109208. PubMed ID: 38759951
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Lipid-Structured Model of Atherosclerotic Plaque Macrophages with Lipid-Dependent Kinetics.
    Watson MG; Chambers KL; Myerscough MR
    Bull Math Biol; 2023 Aug; 85(9):85. PubMed ID: 37581687
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dead cell and debris clearance in the atherosclerotic plaque: Mechanisms and therapeutic opportunities to promote inflammation resolution.
    Dhawan UK; Singhal A; Subramanian M
    Pharmacol Res; 2021 Aug; 170():105699. PubMed ID: 34087352
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modelling Preferential Phagocytosis in Atherosclerosis: Delineating Timescales in Plaque Development.
    Lui G; Myerscough MR
    Bull Math Biol; 2021 Aug; 83(9):96. PubMed ID: 34390421
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Atherogenic lipids and macrophage subsets.
    Getz GS; Reardon CA
    Curr Opin Lipidol; 2015 Oct; 26(5):357-61. PubMed ID: 26218415
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bifunctional supramolecular nanofiber inhibits atherosclerosis by enhancing plaque stability and anti-inflammation in apoE
    Shang Y; Ma C; Zhang J; Wang Z; Ren C; Luo X; Peng R; Liu J; Mao J; Shi Y; Fan G
    Theranostics; 2020; 10(22):10231-10244. PubMed ID: 32929345
    [No Abstract]   [Full Text] [Related]  

  • 8. Macrophage death in atherosclerosis: potential role in calcification.
    Neels JG; Gollentz C; Chinetti G
    Front Immunol; 2023; 14():1215612. PubMed ID: 37469518
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new lipid-structured model to investigate the opposing effects of LDL and HDL on atherosclerotic plaque macrophages.
    Chambers KL; Myerscough MR; Byrne HM
    Math Biosci; 2023 Mar; 357():108971. PubMed ID: 36716850
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ca
    Tajbakhsh A; Kovanen PT; Rezaee M; Banach M; Sahebkar A
    J Clin Med; 2019 Nov; 8(12):. PubMed ID: 31766552
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Giant phagocytes (Gφ) and neutrophil-macrophage hybrids in human carotid atherosclerotic plaques - An activated phenotype.
    Lavie L; Si-On E; Hoffman A
    Front Immunol; 2023; 14():1101569. PubMed ID: 36911715
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Macrophage polarisation associated with atherosclerosis differentially affects their capacity to handle lipids.
    Baidžajevas K; Hadadi É; Lee B; Lum J; Shihui F; Sudbery I; Kiss-Tóth E; Wong SC; Wilson HL
    Atherosclerosis; 2020 Jul; 305():10-18. PubMed ID: 32592946
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Atherosclerotic plaque destabilization: mechanisms, models, and therapeutic strategies.
    Silvestre-Roig C; de Winther MP; Weber C; Daemen MJ; Lutgens E; Soehnlein O
    Circ Res; 2014 Jan; 114(1):214-26. PubMed ID: 24385514
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cytokines, macrophage lipid metabolism and foam cells: implications for cardiovascular disease therapy.
    McLaren JE; Michael DR; Ashlin TG; Ramji DP
    Prog Lipid Res; 2011 Oct; 50(4):331-47. PubMed ID: 21601592
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Programmed death of macrophages in atherosclerosis: mechanisms and therapeutic targets.
    De Meyer GRY; Zurek M; Puylaert P; Martinet W
    Nat Rev Cardiol; 2024 May; 21(5):312-325. PubMed ID: 38163815
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeting foam cell formation and macrophage polarization in atherosclerosis: The Therapeutic potential of rhubarb.
    Liu X; Wu J; Tian R; Su S; Deng S; Meng X
    Biomed Pharmacother; 2020 Sep; 129():110433. PubMed ID: 32768936
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Palmitoylethanolamide Promotes a Proresolving Macrophage Phenotype and Attenuates Atherosclerotic Plaque Formation.
    Rinne P; Guillamat-Prats R; Rami M; Bindila L; Ring L; Lyytikäinen LP; Raitoharju E; Oksala N; Lehtimäki T; Weber C; van der Vorst EPC; Steffens S
    Arterioscler Thromb Vasc Biol; 2018 Nov; 38(11):2562-2575. PubMed ID: 30354245
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Macrophage-, Dendritic-, Smooth Muscle-, Endothelium-, and Stem Cells-Derived Foam Cells in Atherosclerosis.
    Kloc M; Kubiak JZ; Ghobrial RM
    Int J Mol Sci; 2022 Nov; 23(22):. PubMed ID: 36430636
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Macrophage Subsets and Death Are Responsible for Atherosclerotic Plaque Formation.
    Li H; Cao Z; Wang L; Liu C; Lin H; Tang Y; Yao P
    Front Immunol; 2022; 13():843712. PubMed ID: 35432323
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anti-Galectin-2 Antibody Treatment Reduces Atherosclerotic Plaque Size and Alters Macrophage Polarity.
    Kane J; Jansen M; Hendrix S; Bosmans LA; Beckers L; Tiel CV; Gijbels M; Zelcer N; Vries CJ; von Hundelshausen P; Vervloet M; Eringa E; Horrevoets AJ; Royen NV; Lutgens E
    Thromb Haemost; 2022 Jun; 122(6):1047-1057. PubMed ID: 34852377
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.