BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 3699129)

  • 21. [Quantitative evaluation of periodicity of cell movement in the process of aggregation].
    Badenko LA; Kuznetsov VI
    Ontogenez; 1976; 7(3):304-8. PubMed ID: 1026879
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Experimental-morphological study of morphogenetic potencies of homogeneous aggregates of different types of cells from the freshwater sponge Ephydatia fluviatilis (L.)].
    Nikitin NS
    Ontogenez; 1977; 8(5):460-7. PubMed ID: 909680
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The ontogeny of choanocyte chambers during metamorphosis in the demosponge Amphimedon queenslandica.
    Sogabe S; Nakanishi N; Degnan BM
    Evodevo; 2016; 7():6. PubMed ID: 26958337
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Anteroposterior gradient of epithelial transformation during amphibian intestinal remodeling: immunohistochemical detection of intestinal fatty acid-binding protein.
    Ishizuya-Oka A; Ueda S; Damjanovski S; Li Q; Liang VC; Shi YB
    Dev Biol; 1997 Dec; 192(1):149-61. PubMed ID: 9405104
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Primmorphs from archaeocytes-dominant cell population of the sponge hymeniacidon perleve: improved cell proliferation and spiculogenesis.
    Zhang X; Cao X; Zhang W; Yu X; Jin M
    Biotechnol Bioeng; 2003 Dec; 84(5):583-90. PubMed ID: 14574692
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Isolation of the choanocyte in the fresh water sponge, Ephydatia fluviatilis and its lineage marker, Ef annexin.
    Funayama N; Nakatsukasa M; Hayashi T; Agata K
    Dev Growth Differ; 2005 May; 47(4):243-53. PubMed ID: 15921499
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Temporal and spatial expression of an intestinal Na+/PO4 3- cotransporter correlates with epithelial transformation during thyroid hormone-dependent frog metamorphosis.
    Ishizuya-Oka A; Stolow MA; Ueda S; Shi YB
    Dev Genet; 1997; 20(1):53-66. PubMed ID: 9094212
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structure and occurrence of cyphonautes larvae (bryozoa, ectoprocta).
    Nielsen C; Worsaae K
    J Morphol; 2010 Sep; 271(9):1094-109. PubMed ID: 20730922
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ciliary band formation in the doliolaria larva of Florometra. I. The development of normal epithelial pattern.
    Lacalli TC; West JE
    J Embryol Exp Morphol; 1986 Jul; 96():303-23. PubMed ID: 3805989
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development of foregut and proboscis in the buccinid neogastropod Nassarius mendicus: evolutionary opportunity exploited by a developmental module.
    Page LR
    J Morphol; 2005 Jun; 264(3):327-38. PubMed ID: 15838849
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Arginine Biosynthesis by a Bacterial Symbiont Enables Nitric Oxide Production and Facilitates Larval Settlement in the Marine-Sponge Host.
    Song H; Hewitt OH; Degnan SM
    Curr Biol; 2021 Jan; 31(2):433-437.e3. PubMed ID: 33220182
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Organization of the parenchymula of the endemic Baikal sponge Swartschewskia papyracea (Dyb)].
    Alekseeva NP
    Arkh Anat Gistol Embriol; 1980 Dec; 79(12):74-80. PubMed ID: 7247743
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Partitioning of genetically distinct cell populations in chimeric juveniles of the sponge Amphimedon queenslandica.
    Gauthier M; Degnan BM
    Dev Comp Immunol; 2008; 32(11):1270-80. PubMed ID: 18514309
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Metamorphosis of spinal-projecting neurons in the brain of the sea lamprey during transformation of the larva to adult: normal anatomy and response to axotomy.
    Swain GP; Ayers J; Selzer ME
    J Comp Neurol; 1995 Nov; 362(4):453-67. PubMed ID: 8636461
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Feulgen microspectrophotometric analysis of deoxyribonucleoprotein organization in larval and adult freshwater sponge nuclei.
    Harrison FW; Cowden RR
    J Exp Zool; 1975 Aug; 193(2):131-5. PubMed ID: 51903
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Conversion of red blood cells (RBCs) from the larval to the adult type during metamorphosis in Xenopus: specific removal of mature larval-type RBCs by apoptosis.
    Tamori Y; Wakahara M
    Int J Dev Biol; 2000 Jun; 44(4):373-80. PubMed ID: 10949046
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Larval electroreceptors in the epidermis of mormyrid fish: II. The promormyromast.
    Denizot JP; Bensouilah M; Roesler R; Schugardt C; Kirschbaum F
    J Comp Neurol; 2007 Apr; 501(5):810-23. PubMed ID: 17299756
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cell biology of normal and abnormal ciliogenesis in the ciliated epithelium.
    Hagiwara H; Ohwada N; Takata K
    Int Rev Cytol; 2004; 234():101-41. PubMed ID: 15066374
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Morphological chimeras of larvae and adults in a hydrozoan--insights into the control of pattern formation and morphogenesis.
    Kroiher M
    Int J Dev Biol; 2000 Dec; 44(8):861-6. PubMed ID: 11206327
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The regenerative cells during the metamorphosis in the midgut of bees.
    Martins GF; Neves CA; Campos LA; SerrĂ£o JE
    Micron; 2006; 37(2):161-8. PubMed ID: 16168658
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.