BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 36991566)

  • 1. Clinical Validation and Treatment Plan Evaluation Based on Autodelineation of the Clinical Target Volume for Prostate Cancer Radiotherapy.
    Shen J; Tao Y; Guan H; Zhen H; He L; Dong T; Wang S; Chen Y; Chen Q; Liu Z; Zhang F
    Technol Cancer Res Treat; 2023; 22():15330338231164883. PubMed ID: 36991566
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development and validation of a deep learning algorithm for auto-delineation of clinical target volume and organs at risk in cervical cancer radiotherapy.
    Liu Z; Liu X; Guan H; Zhen H; Sun Y; Chen Q; Chen Y; Wang S; Qiu J
    Radiother Oncol; 2020 Dec; 153():172-179. PubMed ID: 33039424
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Clinical feasibility of deep learning-based auto-segmentation of target volumes and organs-at-risk in breast cancer patients after breast-conserving surgery.
    Chung SY; Chang JS; Choi MS; Chang Y; Choi BS; Chun J; Keum KC; Kim JS; Kim YB
    Radiat Oncol; 2021 Feb; 16(1):44. PubMed ID: 33632248
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automatic segmentation of the clinical target volume and organs at risk in the planning CT for rectal cancer using deep dilated convolutional neural networks.
    Men K; Dai J; Li Y
    Med Phys; 2017 Dec; 44(12):6377-6389. PubMed ID: 28963779
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Retrospective study comparing MR-guided radiation therapy (MRgRT) setup strategies for prostate treatment: repositioning vs. replanning.
    Kim JI; Park JM; Choi CH; An HJ; Kim YJ; Kim JH
    Radiat Oncol; 2019 Aug; 14(1):139. PubMed ID: 31387593
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A blind randomized validated convolutional neural network for auto-segmentation of clinical target volume in rectal cancer patients receiving neoadjuvant radiotherapy.
    Wu Y; Kang K; Han C; Wang S; Chen Q; Chen Y; Zhang F; Liu Z
    Cancer Med; 2022 Jan; 11(1):166-175. PubMed ID: 34811957
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Patient-specific transfer learning for auto-segmentation in adaptive 0.35 T MRgRT of prostate cancer: a bi-centric evaluation.
    Kawula M; Hadi I; Nierer L; Vagni M; Cusumano D; Boldrini L; Placidi L; Corradini S; Belka C; Landry G; Kurz C
    Med Phys; 2023 Mar; 50(3):1573-1585. PubMed ID: 36259384
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Segmentation of organs-at-risk in cervical cancer CT images with a convolutional neural network.
    Liu Z; Liu X; Xiao B; Wang S; Miao Z; Sun Y; Zhang F
    Phys Med; 2020 Jan; 69():184-191. PubMed ID: 31918371
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dosimetric and feasibility evaluation of a CBCT-based daily adaptive radiotherapy protocol for locally advanced cervical cancer.
    Branco D; Mayadev J; Moore K; Ray X
    J Appl Clin Med Phys; 2023 Jan; 24(1):e13783. PubMed ID: 36208134
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automatic contouring system for cervical cancer using convolutional neural networks.
    Rhee DJ; Jhingran A; Rigaud B; Netherton T; Cardenas CE; Zhang L; Vedam S; Kry S; Brock KK; Shaw W; O'Reilly F; Parkes J; Burger H; Fakie N; Trauernicht C; Simonds H; Court LE
    Med Phys; 2020 Nov; 47(11):5648-5658. PubMed ID: 32964477
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The dosimetric impact of deep learning-based auto-segmentation of organs at risk on nasopharyngeal and rectal cancer.
    Guo H; Wang J; Xia X; Zhong Y; Peng J; Zhang Z; Hu W
    Radiat Oncol; 2021 Jun; 16(1):113. PubMed ID: 34162410
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automatic Segmentation of Clinical Target Volume and Organs-at-Risk for Breast Conservative Radiotherapy Using a Convolutional Neural Network.
    Liu Z; Liu F; Chen W; Tao Y; Liu X; Zhang F; Shen J; Guan H; Zhen H; Wang S; Chen Q; Chen Y; Hou X
    Cancer Manag Res; 2021; 13():8209-8217. PubMed ID: 34754241
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluating the relationship between contouring variability and modelled treatment outcome for prostate bed radiotherapy.
    Le Bao V; Haworth A; Dowling J; Walker A; Arumugam S; Jameson M; Chlap P; Wiltshire K; Keats S; Cloak K; Sidhom M; Kneebone A; Holloway L
    Phys Med Biol; 2024 Apr; 69(8):. PubMed ID: 38471173
    [No Abstract]   [Full Text] [Related]  

  • 14. RefineNet-based 2D and 3D automatic segmentations for clinical target volume and organs at risks for patients with cervical cancer in postoperative radiotherapy.
    Xiao C; Jin J; Yi J; Han C; Zhou Y; Ai Y; Xie C; Jin X
    J Appl Clin Med Phys; 2022 Jul; 23(7):e13631. PubMed ID: 35533205
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Implementation of deep learning-based auto-segmentation for radiotherapy planning structures: a workflow study at two cancer centers.
    Wong J; Huang V; Wells D; Giambattista J; Giambattista J; Kolbeck C; Otto K; Saibishkumar EP; Alexander A
    Radiat Oncol; 2021 Jun; 16(1):101. PubMed ID: 34103062
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automatic delineation of the clinical target volume and organs at risk by deep learning for rectal cancer postoperative radiotherapy.
    Song Y; Hu J; Wu Q; Xu F; Nie S; Zhao Y; Bai S; Yi Z
    Radiother Oncol; 2020 Apr; 145():186-192. PubMed ID: 32044531
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automatic segmentation for adaptive planning in nasopharyngeal carcinoma IMRT: Time, geometrical, and dosimetric analysis.
    Fung NTC; Hung WM; Sze CK; Lee MCH; Ng WT
    Med Dosim; 2020 Spring; 45(1):60-65. PubMed ID: 31345672
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proposal of a post-prostatectomy clinical target volume based on pre-operative MRI: volumetric and dosimetric comparison to the RTOG guidelines.
    Croke J; Maclean J; Nyiri B; Li Y; Malone K; Avruch L; Kayser C; Malone S
    Radiat Oncol; 2014 Dec; 9():303. PubMed ID: 25534278
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Beam mask and sliding window-facilitated deep learning-based accurate and efficient dose prediction for pencil beam scanning proton therapy.
    Zhang L; Holmes JM; Liu Z; Vora SA; Sio TT; Vargas CE; Yu NY; Keole SR; Schild SE; Bues M; Li S; Liu T; Shen J; Wong WW; Liu W
    Med Phys; 2024 Feb; 51(2):1484-1498. PubMed ID: 37748037
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Delineation of clinical target volume and organs at risk in cervical cancer radiotherapy by deep learning networks.
    Tian M; Wang H; Liu X; Ye Y; Ouyang G; Shen Y; Li Z; Wang X; Wu S
    Med Phys; 2023 Oct; 50(10):6354-6365. PubMed ID: 37246619
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.