These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 36991609)

  • 1. Original and Low-Cost ADS-B System to Fulfill Air Traffic Safety Obligations during High Power LIDAR Operation.
    Peyrin F; Fréville P; Montoux N; Baray JL
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991609
    [TBL] [Abstract][Full Text] [Related]  

  • 2. LIDAR developments at Clermont-Ferrand--France for atmospheric observation.
    Fréville P; Montoux N; Baray JL; Chauvigné A; Réveret F; Hervo M; Dionisi D; Payen G; Sellegri K
    Sensors (Basel); 2015 Jan; 15(2):3041-69. PubMed ID: 25643059
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Airborne forward-pointing UV Rayleigh lidar for remote clear air turbulence detection: system design and performance.
    Vrancken P; Wirth M; Ehret G; Barny H; Rondeau P; Veerman H
    Appl Opt; 2016 Nov; 55(32):9314-9328. PubMed ID: 27857327
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurement of the lidar ratio for atmospheric aerosols with a 180 degrees backscatter nephelometer.
    Doherty SJ; Anderson TL; Charlson RJ
    Appl Opt; 1999 Mar; 38(9):1823-32. PubMed ID: 18305813
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scanning lidar with a coupled radar safety system.
    Kent GS; Hansen GM
    Appl Opt; 1999 Oct; 38(30):6383-7. PubMed ID: 18324168
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultraviolet Rayleigh-Mie lidar by use of a multicavity Fabry-Perot filter for accurate temperature profiling of the troposphere.
    Hua D; Kobayashi T
    Appl Opt; 2005 Oct; 44(30):6474-8. PubMed ID: 16252659
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coherent high-spectral-resolution lidar for the measurement of the atmospheric Mie-Rayleigh-Brillouin backscatter spectrum.
    Chen X; Dai G; Wu S; Liu J; Yin B; Wang Q; Zhang Z; Qin S; Wang X
    Opt Express; 2022 Oct; 30(21):38060-38076. PubMed ID: 36258379
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tentative detection of clear-air turbulence using a ground-based Rayleigh lidar.
    Hauchecorne A; Cot C; Dalaudier F; Porteneuve J; Gaudo T; Wilson R; Cénac C; Laqui C; Keckhut P; Perrin JM; Dolfi A; Cézard N; Lombard L; Besson C
    Appl Opt; 2016 May; 55(13):3420-8. PubMed ID: 27140350
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New methods of data calibration for high power-aperture lidar.
    Guan S; Yang G; Chang Q; Cheng X; Yang Y; Gong S; Wang J
    Opt Express; 2013 Mar; 21(6):7768-85. PubMed ID: 23546158
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ground-based, integrated path differential absorption LIDAR measurement of CO
    Wagner GA; Plusquellic DF
    Appl Opt; 2016 Aug; 55(23):6292-310. PubMed ID: 27534472
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rugged diode-pumped Alexandrite laser as an emitter in a compact mobile lidar system for atmospheric measurements.
    Munk A; Strotkamp M; Jungbluth B; Froh J; Mense T; Mauer A; Höffner J
    Appl Opt; 2021 Jun; 60(16):4668-4679. PubMed ID: 34143024
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wyoming Cloud Lidar: instrument description and applications.
    Wang Z; Wechsler P; Kuestner W; French J; Rodi A; Glover B; Burkhart M; Lukens D
    Opt Express; 2009 Aug; 17(16):13576-87. PubMed ID: 19654765
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultraviolet Rayleigh-Mie lidar with Mie-scattering correction by Fabry-Perot etalons for temperature profiling of the troposphere.
    Hua D; Uchida M; Kobayashi T
    Appl Opt; 2005 Mar; 44(7):1305-14. PubMed ID: 15765711
    [TBL] [Abstract][Full Text] [Related]  

  • 14. LED Mini Lidar for Atmospheric Application.
    Shiina T
    Sensors (Basel); 2019 Jan; 19(3):. PubMed ID: 30700059
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Raman-lidar humidity sounding of the atmospheric boundary-layer.
    Pourny JC; Renaut D; Orszag A
    Appl Opt; 1979 Apr; 18(8):1141-8. PubMed ID: 20208900
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Parameter Optimization and Development of Mini Infrared Lidar for Atmospheric Three-Dimensional Detection.
    Kuang Z; Liu D; Wu D; Wang Z; Li C; Deng Q
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679687
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Examination of the traditional Raman lidar technique. I. Evaluating the temperature-dependent lidar equations.
    Whiteman DN
    Appl Opt; 2003 May; 42(15):2571-92. PubMed ID: 12776994
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of an Automatic Polarization Raman LiDAR for Aerosol Monitoring over Complex Terrain.
    Wang L; Stanič S; Eichinger W; Song X; Zavrtanik M
    Sensors (Basel); 2019 Jul; 19(14):. PubMed ID: 31331054
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aircraft trajectory prediction and aviation safety in ADS-B failure conditions based on neural network.
    Yang Z; Kang X; Gong Y; Wang J
    Sci Rep; 2023 Nov; 13(1):19677. PubMed ID: 37952077
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inversion with regularization for the retrieval of tropospheric aerosol parameters from multiwavelength lidar sounding.
    Veselovskii I; Kolgotin A; Griaznov V; Müller D; Wandinger U; Whiteman DN
    Appl Opt; 2002 Jun; 41(18):3685-99. PubMed ID: 12078696
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.