These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 36991654)

  • 1. An Electro-Oculogram (EOG) Sensor's Ability to Detect Driver Hypovigilance Using Machine Learning.
    Murugan S; Sivakumar PK; Kavitha C; Harichandran A; Lai WC
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991654
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection and analysis: driver state with electrocardiogram (ECG).
    Murugan S; Selvaraj J; Sahayadhas A
    Phys Eng Sci Med; 2020 Jun; 43(2):525-537. PubMed ID: 32524437
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Drowsiness Detection Using Ocular Indices from EEG Signal.
    Tarafder S; Badruddin N; Yahya N; Nasution AH
    Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808261
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Driver drowsiness detection based on classification of surface electromyography features in a driving simulator.
    Mahmoodi M; Nahvi A
    Proc Inst Mech Eng H; 2019 Apr; 233(4):395-406. PubMed ID: 30823855
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Driver Drowsiness Detection: A Machine Learning Approach on Skin Conductance.
    Amidei A; Spinsante S; Iadarola G; Benatti S; Tramarin F; Pavan P; Rovati L
    Sensors (Basel); 2023 Apr; 23(8):. PubMed ID: 37112345
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A hybrid approach for driver drowsiness detection utilizing practical data to improve performance system and applicability.
    Khanehshenas F; Mazloumi A; Nahvi A; Nickabadi A; Sadeghniiat K; Rahimiforoushani A; Aghamalizadeh A
    Work; 2024; 77(4):1165-1177. PubMed ID: 38007634
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Hybrid Approach to Detect Driver Drowsiness Utilizing Physiological Signals to Improve System Performance and Wearability.
    Awais M; Badruddin N; Drieberg M
    Sensors (Basel); 2017 Aug; 17(9):. PubMed ID: 28858220
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physiological signal-based drowsiness detection using machine learning: Singular and hybrid signal approaches.
    Hasan MM; Watling CN; Larue GS
    J Safety Res; 2022 Feb; 80():215-225. PubMed ID: 35249601
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Driver Drowsiness Multi-Method Detection for Vehicles with Autonomous Driving Functions.
    Beles H; Vesselenyi T; Rus A; Mitran T; Scurt FB; Tolea BA
    Sensors (Basel); 2024 Feb; 24(5):. PubMed ID: 38475079
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Validation and interpretation of a multimodal drowsiness detection system using explainable machine learning.
    Hasan MM; Watling CN; Larue GS
    Comput Methods Programs Biomed; 2024 Jan; 243():107925. PubMed ID: 38000319
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Event-related driver stress detection with smartphones among young novice drivers.
    Zhou X; Ma L; Zhang W
    Ergonomics; 2022 Aug; 65(8):1154-1172. PubMed ID: 34919031
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection of driver drowsiness level using a hybrid learning model based on ECG signals.
    Xiong H; Yan Y; Sun L; Liu J; Han Y; Xu Y
    Biomed Tech (Berl); 2024 Apr; 69(2):151-165. PubMed ID: 37823389
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multimodal analysis of electroencephalographic and electrooculographic signals.
    ElSayed NE; Tolba AS; Rashad MZ; Belal T; Sarhan S
    Comput Biol Med; 2021 Oct; 137():104809. PubMed ID: 34517160
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-Invasive Driver Drowsiness Detection System.
    Siddiqui HUR; Saleem AA; Brown R; Bademci B; Lee E; Rustam F; Dudley S
    Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300572
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of Graph Neural Network in Driving Fatigue Detection Based on EEG Signals.
    Mu Z; Jin L; Yin J; Wang Q
    Comput Intell Neurosci; 2022; 2022():9775784. PubMed ID: 36052050
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Information fusion and multi-classifier system for miner fatigue recognition in plateau environments based on electrocardiography and electromyography signals.
    Chen S; Xu K; Yao X; Ge J; Li L; Zhu S; Li Z
    Comput Methods Programs Biomed; 2021 Nov; 211():106451. PubMed ID: 34644668
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Novel Fatigue Driving State Recognition and Warning Method Based on EEG and EOG Signals.
    Liu L; Ji Y; Gao Y; Ping Z; Kuang L; Li T; Xu W
    J Healthc Eng; 2021; 2021():7799793. PubMed ID: 34853672
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of driver drowsiness using electroencephalogram signals based on multiple functional brain networks.
    Chen J; Wang H; Hua C
    Int J Psychophysiol; 2018 Nov; 133():120-130. PubMed ID: 30081067
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detecting slow eye movement for recognizing driver's sleep onset period with EEG features.
    Yingying Jiao ; Bao-Liang Lu
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():4658-4661. PubMed ID: 28269313
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sleep stage classification using single-channel EOG.
    Rahman MM; Bhuiyan MIH; Hassan AR
    Comput Biol Med; 2018 Nov; 102():211-220. PubMed ID: 30170769
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.